Пусть скорость второго Х км/ч и пройдёт он это расстояние за 120/Х часов.
Тогда скорость первого (Х+12) км/ч и пройдёт он это же расстояние за 120/Х+12 часов.
По условию задачи известно, что первый проходит это расстояние быстрее, следовательно, тратит меньше времени чем второй на 50 мин=5/6часа. Можем соста вить ур-е:
120/Х-120/Х+12=5/6-разделим обе части ур-я на 120
1/Х-1/Х+12=1/(6*24)
(Х+12-Х)/Х(Х+12)=1/144
12/Х(Х+12)=1/144
Х(Х+12)=12*144
Х^2 + 12Х -1728=0
D=36+1728=1764
Х=-6+42=36 (км/ч) и Х=-6-42=-48<0- не удовл. условию задачи
Пусть скорость второго Х км/ч и пройдёт он это расстояние за 120/Х часов.
Тогда скорость первого (Х+12) км/ч и пройдёт он это же расстояние за 120/Х+12 часов.
По условию задачи известно, что первый проходит это расстояние быстрее, следовательно, тратит меньше времени чем второй на 50 мин=5/6часа. Можем соста вить ур-е:
120/Х-120/Х+12=5/6-разделим обе части ур-я на 120
1/Х-1/Х+12=1/(6*24)
(Х+12-Х)/Х(Х+12)=1/144
12/Х(Х+12)=1/144
Х(Х+12)=12*144
Х^2 + 12Х -1728=0
D=36+1728=1764
Х=-6+42=36 (км/ч) и Х=-6-42=-48<0- не удовл. условию задачи
Х+12=36+12=48(км/ч)
Зная, что !Х!=Х, если Х >0 и
!Х!=-Х, еслиХ<0.
Поэтому надо рассмотреть эту ф-ю на 1) промежутке 5Х+6> или =0
Х>= -6/5
на этом промежутке У=Х^2-5Х-6- парабола, ветви вверх, нули ф-ции: Х=-1 и Х=6
2) на промежутке 5Х+6<0
X<-6/5,
тогда ф-я имеет вид У=Х^2+5X+6-парабола, ветви вверх, нули ф-ции: Х=-3 и Х=-2
теперь строй