3x(x+4) ≤0 (x-2) решим методом интервалов значения х обращающие числитель и знаменатель в 0 это х={-4, 0, 2} рассмотрим знак выражения при х принадлежащих интервалам 1) при х∈(-∞,-4) возьмем какое-либо значение из этого интервала например -5 и вычислим значение выражения 3(-5)(-5+4)/(-5-2)=-15/7<0 знак - 2) при х∈(-4, 0) например х=-2 , 3(-2)(-2+4)/(-2-2)=12/2>0 знак + 3) при х∈(0,2) например х=1 , 3*5/(1-2)=-15<0 знак - 4) при х∈(2,+∞) например х=3 3*3(3+7)/(3-2)>0 знак + выберем те интервалы у которых знак - значения которые обращают числитель в 0 включим, которые обращают знаменатель в 0 исключим х∈ (-∞;-4]U[0;2)
1)
{
x
+
2
y
=
0
,
5
x
+
y
=
−
18
;
2)
{
2
x
−
5
y
=
10
,
4
x
−
y
=
2
;
3)
{
x
−
2
y
=
1
,
y
−
x
=
−
2
;
4)
{
x
+
y
=
−
3
,
x
−
y
=
−
1.
Решение 1
{
x
+
2
y
=
0
,
5
x
+
y
=
−
18
;
x + 2y = 0
x = −2y
Решение рисунок 1
5x + y = −18
y = −18 − 5x
Решение рисунок 2
Решение рисунок 3
Графики уравнений пересекаются в точке (−4;2), следовательно данная пара чисел является решением данной системы уравнения.
Решение 2
{
2
x
−
5
y
=
10
,
4
x
−
y
=
2
;
2x − 5y = 10
−5y = 10 − 2x
y
=
2
5
x
−
2
Решение рисунок 1
4x − y = 2
−y = 2 − 4x
y = 4x − 2
Решение рисунок 2
Решение рисунок 3
Графики уравнений пересекаются в точке (0;−2), следовательно данная пара чисел является решением данной системы уравнения.
Решение 3
{
x
−
2
y
=
1
,
y
−
x
=
−
2
;
x − 2y = 1
x = 1 + 2y
Решение рисунок 1
y − x = −2
y = x − 2
Решение рисунок 2
Решение рисунок 3
Графики уравнений пересекаются в точке (3;1), следовательно данная пара чисел является решением данной системы уравнения.
Решение 4
{
x
+
y
=
−
3
,
x
−
y
=
−
1.
x + y = −3
y = −3 − x
x − y = −1
−y = −1 − x
y = x + 1
Графики уравнений пересекаются в точке (−2;−1), следовательно данная пара чисел является решением данной системы уравнения.
Объяснение:
≤0
(x-2)
решим методом интервалов
значения х обращающие числитель и знаменатель в 0
это х={-4, 0, 2}
рассмотрим знак выражения при х принадлежащих интервалам
1) при х∈(-∞,-4) возьмем какое-либо значение из этого интервала например -5 и вычислим значение выражения 3(-5)(-5+4)/(-5-2)=-15/7<0 знак -
2) при х∈(-4, 0) например х=-2 , 3(-2)(-2+4)/(-2-2)=12/2>0 знак +
3) при х∈(0,2) например х=1 , 3*5/(1-2)=-15<0 знак -
4) при х∈(2,+∞) например х=3 3*3(3+7)/(3-2)>0 знак +
выберем те интервалы у которых знак - значения которые обращают числитель в 0 включим, которые обращают знаменатель в 0 исключим
х∈ (-∞;-4]U[0;2)