В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
hohotuchka
hohotuchka
07.01.2021 16:00 •  Алгебра

Выразите рациональную дробь в виде десятичной дроби с выраженным периодом.

Показать ответ
Ответ:
Serenael666
Serenael666
24.07.2020 13:58
Эта дробь имеет вид 0,92(А), где A - 1392-значное число. Его цифры и есть период дроби, при этом A=3523\cdot (10^{1392}-1)/27081=1300...117.
Найти это можно даже без калькулятора, но надо кое-чего знать помимо школьной программы. Дробь будет чисто периодической, если ее знаменатель взаимно прост с 10, поэтому будем искать период дроби 100*99799/108324=92+3523/27081=92,(A), которая уже чисто периодическая.
Если обозначить a=3523 и b=27081, A - n-значное число в периоде дроби a/b, то 10^na/b-a/b=a(10^n-1)/b=A. Т.е. нам надо найти минимальное n, такое что 10^n-1 делится на b. Такое n называется порядком числа 10 по модулю b. Т.к. b=27081=27*17*59, то достаточно найти порядки числа 10 по модулям 27, 17, 59. Они равны 3, 16, 58 соответственно. Поэтому длина периода равна НОК(3,16,58)=1392,  а A=a (10^{1392}-1)/b.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота