Пусть 2-ой рабочий в день изготавливал х детлей, а 1-ый рабочий х+2 детали. 1-ый рабочий изготовил 65 деталей и работал 65/(х+2)дня, 2-ой рабочий изготовил 131-65=66 деталей и работал 66/х дней. 2-ой рабочий работал на 1 день больше, значит 66/х-65/(х+2)=1 приводим общему знаменателю х(х+2)
(66(х+2)-65х)/х(х+2)=1
66х+132-65х=х(х+2)
х+132=х^2+2х
х^2+2х-х-132=0
х^2+х-132=0
Дискриминант Д=1+528=529
корень из Д=23
х1=(-1-23)/2=-12-не может быть отриц
х2=(-1+23)/2=11
2-ой рабочий в день изготавливал 11деталей, а 1-ый рабочий 11+2=13
Ctq(t-π) = -3/4⇒ctqt = -3/4 (πk , k∈Z период функции y =ctqx). ctqt = -3/4 ,π/2 < t < π . 1) cos(3π/2 -t ) = -sint = -1/√(1+ctq²t) = -1/√ (1+(-3/4)²) = - 4/5. ( учтено, если π/2 < t < π ⇒sint >0 ) . 2) cos(π+t) = -cost = -(-1/√(1+tq²t)) = 1/√(1+tq²t) =1/√ (1+(-4/3)²) =3/5 (снова учтено факт: если π/2 < t < π ⇒cost<0 ) .
* * * можно иначе если совместно решаются эти два пункта * * * cos(π+t) = -cost = -sint *ctqt = (4/5)* = (-4/5)*(-3/4) =3/5 используя найденное значения (- sint ) из предыдущего пункта.
(66(х+2)-65х)/х(х+2)=1
66х+132-65х=х(х+2)
х+132=х^2+2х
х^2+2х-х-132=0
х^2+х-132=0
Дискриминант Д=1+528=529
корень из Д=23
х1=(-1-23)/2=-12-не может быть отриц
х2=(-1+23)/2=11
2-ой рабочий в день изготавливал 11деталей, а 1-ый рабочий 11+2=13
вместе они изготавливали за 1день 11+13=24 детали
ctqt = -3/4 ,π/2 < t < π .
1) cos(3π/2 -t ) = -sint = -1/√(1+ctq²t) = -1/√ (1+(-3/4)²) = - 4/5.
( учтено, если π/2 < t < π ⇒sint >0 ) .
2) cos(π+t) = -cost = -(-1/√(1+tq²t)) = 1/√(1+tq²t) =1/√ (1+(-4/3)²) =3/5
(снова учтено факт: если π/2 < t < π ⇒cost<0 ) .
* * * можно иначе если совместно решаются эти два пункта * * *
cos(π+t) = -cost = -sint *ctqt = (4/5)* = (-4/5)*(-3/4) =3/5 используя найденное значения (- sint ) из предыдущего пункта.