Это функция представляет из себя ломанную, нам надо найти нули этой функции. На числовой прямой отметим точки в которых аргументы модулей равны нулю. Таким образом мы сможем узнать как на промежутках раскрываются модули и выглядит функция, сверху напишу модули, чтобы было понятно, хотя можно сразу писать конечную функцию для промежутка. см. вниз.
Да и ||2x-1|-5| я представил как |2x-6| и |-2x-4|, при этом первый существует когда x>0.5, а другой когда x<0.5 т.к. 2x-1=0 =>x=0.5
Ординаты точек в которых происходит смена знака у модуля.
Можно построить график ломанной, а можно сразу по условию определить где функция будет равна 0.
Главное помнить, что функция существует на каком-то промежутку, а не при всех х.
|+7| = 7 |-7| = 7, поэтому, если |x| = 7, то делаем вывод, что x = +-7 A) |2x-5|-1 = 7 или |2x-5|-1 = -7 |2x-5| = 8 или |2x-5| = -6 ---это невозможно по определению модуля 2x-5 = 8 или 2x-5 = -8 2x = 13 или 2x = -3 x = 6.5 или x = -1.5 Б) |2x-1|-5 = 7 или |2x-1|-5 = -7 |2x-1| = 12 или |2x-1| = -2 ---это невозможно по определению модуля 2x-1 = 12 или 2x-1 = -12 2x = 13 или 2x = -11 x = 6.5 или x = -5.5
3x+2 = 5x+6 или 3x+2 = -(5x+6) 2x = -4 или 8x = -8 x = -2 или x = -1
Это функция представляет из себя ломанную, нам надо найти нули этой функции. На числовой прямой отметим точки в которых аргументы модулей равны нулю. Таким образом мы сможем узнать как на промежутках раскрываются модули и выглядит функция, сверху напишу модули, чтобы было понятно, хотя можно сразу писать конечную функцию для промежутка. см. вниз.
Да и ||2x-1|-5| я представил как |2x-6| и |-2x-4|, при этом первый существует когда x>0.5, а другой когда x<0.5 т.к. 2x-1=0 =>x=0.5
Ординаты точек в которых происходит смена знака у модуля.
Можно построить график ломанной, а можно сразу по условию определить где функция будет равна 0.
Главное помнить, что функция существует на каком-то промежутку, а не при всех х.
ответ: x∈[0.5;3].
|-7| = 7,
поэтому, если |x| = 7, то делаем вывод, что x = +-7
A) |2x-5|-1 = 7 или |2x-5|-1 = -7
|2x-5| = 8 или |2x-5| = -6 ---это невозможно по определению модуля
2x-5 = 8 или 2x-5 = -8
2x = 13 или 2x = -3
x = 6.5 или x = -1.5
Б) |2x-1|-5 = 7 или |2x-1|-5 = -7
|2x-1| = 12 или |2x-1| = -2 ---это невозможно по определению модуля
2x-1 = 12 или 2x-1 = -12
2x = 13 или 2x = -11
x = 6.5 или x = -5.5
3x+2 = 5x+6 или 3x+2 = -(5x+6)
2x = -4 или 8x = -8
x = -2 или x = -1