Примем вклад за 1. Если вклад увеличится на 10%, то он составит по отношению к первоначальному: 100% + 10% = 110% 110% = 1,1 Значит, размер вклада должен стать больше 1,1.
При увеличении вклада на 3%, к концу года вклад составит: 100% + 3% = 103% 103% = 1,03
1 * 1,03 = 1,03 - размер вклада через 1 год. 1,03 * 1,03 = 1,0609 - размер вклада через два года. 1,0609 * 1,03 ≈ 1,093 - размер вклада через три года. 1,093 * 1,03 ≈ 1,126 - размер вклада через четыре года. 1,126 > 1.1 ответ: через четыре года вклад вырастет более чем на 10%.
Если вклад увеличится на 10%, то он составит по отношению к первоначальному:
100% + 10% = 110%
110% = 1,1
Значит, размер вклада должен стать больше 1,1.
При увеличении вклада на 3%, к концу года вклад составит:
100% + 3% = 103%
103% = 1,03
1 * 1,03 = 1,03 - размер вклада через 1 год.
1,03 * 1,03 = 1,0609 - размер вклада через два года.
1,0609 * 1,03 ≈ 1,093 - размер вклада через три года.
1,093 * 1,03 ≈ 1,126 - размер вклада через четыре года.
1,126 > 1.1
ответ: через четыре года вклад вырастет более чем на 10%.
(x³ + 1)/(x + 1) + 3/(x² - x + 1) ≤ 4
одз x≠-1
да и сократим первyю дробь
(x² - x + 1) + 3/(x² - x + 1) ≤ 4
(x² - x + 1) всегда положителен D<0 и коэффициент при х^2 больше 0
приводим к общему знаменателю и отбрасываем его(он всегда положителен)
(x² - x + 1)² - 4(x² - x + 1) + 3 ≤ 0
D = 16 - 12 = 4
(x² - x + 1)₁₂ = (4 +- 2)/2 = 1 3
(x² - x + 1 - 1)(x² - x + 1 - 3) ≤ 0
(x² - x)(x² - x - 2) ≤ 0
вторая скобка D=1+8 = 9 x12=(1+-3)/2 = 2 -1 x² - x - 2 = (x - 2)(x + 1)
x(x-1)(x-2)(x+1) ≤ 0
применяем метод интервалов
[-1] [0] [1] [2]
x ∈ [-1,0] U [1,2]
вспоминаем одз х≠-1
ответ x ∈ (-1,0] U [1,2]