высота над землёй подброшенного вверх с вышки мяча меняется по закону 2 h (t) = 42,5+9t-3t^2, где h – высота в метрах, t – время в секундах. на какой высоте будет мяч через 4 секунды?
За сутки стрелки часов перпендикулярны друг другу ровно 44 раза: После 00:00 минутная стрелка поворачивается на угол (90+a)°, а часовая на угол а°. При этом часовая стрелка движется в 12 раз медленнее минутной. 90+a = 12a 90 = 11a a = 90/11° = (8 2/11)° За 1 час часовая стрелка поворачивается на 360/12 = 30°. Значит, первый раз стрелки станут перпендикулярны друг другу через 90/11 : 30 = 3/11 часа = 60*3/11 мин = 180/11 мин = 16 4/11 мин = = 16 мин 240/11 сек = 16 мин 21 9/11 сек Второй раз наступит, когда угол будет равен 270°. Тогда часовая стрелка повернется на угол b°, а минутная на (270+b)° 270+b= 12b 270 = 11b b = 270/11° = (24 6/11)° Это случится в момент 270/11 : 30 = 9/11 часа = 540/11 мин = 49 1/11 мин = 49 мин 60/11 сек = 49 мин 5 5/11 сек. Дальше это положение будет повторяться по 2 раза в час. Первое положение, когда часовая стрелка слева от минутной, 90°, повторяется через 12/11 часа = 1 час 1/11 = 1 час 60/11 мин = = 1 час 5 5/11 мин = 1 час 5 мин 300/11 сек = 1 час 5 мин 27 3/11 сек. Второе положение, когда часовая стрелка справа от минутной, 270°, тоже повторяется через 1 час 5 мин 27 3/11 сек. Всего 22 раза за 12 часов, или 44 раза за сутки.
Простое тригонометрическое уравнение. Косинус равен минус 1/2, когда его аргумент равен (120° или 2π/3) и (240° или 4π/3). Ещё следует добавить период 2πn, где n ∈ Z (целое).
Т.е. решением cos(x-π/4) = -1/2 будет: 1) x - π/4 = 2π/3 + 2πn; x = 2π/3 + π/4 + 2πn = 11π/12 + 2πn 2) x - π/4 = 4π/3 + 2πn; x = 4π/3 + π/4 + 2πn = 19π/12 + 2πn
Если последнее чем-то не нравится, то можно из решения вычесть один период, т.е. 2π = 24π/12. Тогда, второе решение буде выглядеть так: x = 19π/12 + 2πn - 24π/12 = -5π/12 + 2πn. Но это одно и тоже.
После 00:00 минутная стрелка поворачивается на угол (90+a)°, а часовая на угол а°.
При этом часовая стрелка движется в 12 раз медленнее минутной.
90+a = 12a
90 = 11a
a = 90/11° = (8 2/11)°
За 1 час часовая стрелка поворачивается на 360/12 = 30°.
Значит, первый раз стрелки станут перпендикулярны друг другу через
90/11 : 30 = 3/11 часа = 60*3/11 мин = 180/11 мин = 16 4/11 мин =
= 16 мин 240/11 сек = 16 мин 21 9/11 сек
Второй раз наступит, когда угол будет равен 270°. Тогда часовая стрелка повернется на угол b°, а минутная на (270+b)°
270+b= 12b
270 = 11b
b = 270/11° = (24 6/11)°
Это случится в момент 270/11 : 30 = 9/11 часа = 540/11 мин = 49 1/11 мин
= 49 мин 60/11 сек = 49 мин 5 5/11 сек.
Дальше это положение будет повторяться по 2 раза в час.
Первое положение, когда часовая стрелка слева от минутной, 90°, повторяется через 12/11 часа = 1 час 1/11 = 1 час 60/11 мин =
= 1 час 5 5/11 мин = 1 час 5 мин 300/11 сек = 1 час 5 мин 27 3/11 сек.
Второе положение, когда часовая стрелка справа от минутной, 270°, тоже повторяется через 1 час 5 мин 27 3/11 сек.
Всего 22 раза за 12 часов, или 44 раза за сутки.
Т.е. решением cos(x-π/4) = -1/2 будет:
1) x - π/4 = 2π/3 + 2πn; x = 2π/3 + π/4 + 2πn = 11π/12 + 2πn
2) x - π/4 = 4π/3 + 2πn; x = 4π/3 + π/4 + 2πn = 19π/12 + 2πn
Если последнее чем-то не нравится, то можно из решения вычесть один период, т.е. 2π = 24π/12. Тогда, второе решение буде выглядеть так: x = 19π/12 + 2πn - 24π/12 = -5π/12 + 2πn. Но это одно и тоже.