6. (a — 5x)² + (a + 5x²) = a² —10ax + 25x² + a + 5x² = a² + a — 10ax + 30x² = a(a + 1) — 10x(a + 3x); И всё же мне кажется, что ты допустила ошибку в написании данного выражение, поэтому держи альтернативный вариант решения на всякий случай (если ты, конечно, допустила ошибку): (a — 5x)² + (a + 5x)² = (a — 5x + a + 5x)(a — 5x — a — 5x) = 2a * (—10x) = —20ax;
В итоге,существует расставить 2 ученикам 2 оценки (4 и 5).
А если прибавить к ним еще одного ученика - С. То:
А Б С 4 4 4 5 5 5 4 4 5 4 5 5 5 5 4 5 4 4 4 5 4 5 4 5
В итоге получаем
А что если, оставим тех же 2 учеников, но добавим 1 оценку - 3?
А вот что получим:
А Б 3 3 4 4 5 5 3 4 4 3 4 5 5 4 3 5 5 3
В итоге, мы получили
Нет смысла, добавлять 3 ученика. Уже и так можно увидеть закономерность.
В 1 раз, мы имели 2 ученика и 2 оценки, отметим это как:
В 2 раз, мы имели 3 ученика и 2 оценки, отметим это как:
В 3 раз, мы имели 2 ученика и 3 оценки, отметим это как:
А теперь, выведем формулу: - где a-число оценок, b-число учеников.
В итоге и получаем: 1 случай:
2 случай:
3 случай:
Теперь, вычислим наш случай в задаче. Есть 24 ученика = b, и 4 оценки=a (2,3,4,5). Отсюда:
Второй
Для первого ученика существует 4 варианта: 2,3,4,5 Для второго ученика существует 4 варианта на каждый вариант первого ученика. То есть: - варианта событий.
Для третьего ученика существует 4 варианта на каждый вариант второго ученика. То есть: - варианта событий.
И так далее. В итоге получаем, что для 24 учеников существует ровно:
2. (a + 11)² — 20a = a² + 22a + 121 — 20a = a² + 2a + 121;
3. 4x² — (x — 3y)² = (2x)² — (x — 3y)² = (2x — x + 3y)(2x + x — 3y) = (x + 3y)(3x — 3y);
4. (a + 2b)(a — 2b) — (a — b)² = a² — 4b² — (a² — 2ab + b²) = a² — 4b² — a² + 2ab — b² = —5b² + 2ab;
5. (b — 1)(b + 1) — (a + 1)(a — 1) = b² — 1² — (a² — 1²) = b² — 1 — a² + 1 = b² — a² = (b — a)(b + a);
6. (a — 5x)² + (a + 5x²) = a² —10ax + 25x² + a + 5x² = a² + a — 10ax + 30x² = a(a + 1) — 10x(a + 3x);
И всё же мне кажется, что ты допустила ошибку в написании данного выражение, поэтому держи альтернативный вариант решения на всякий случай (если ты, конечно, допустила ошибку):
(a — 5x)² + (a + 5x)² = (a — 5x + a + 5x)(a — 5x — a — 5x) = 2a * (—10x) = —20ax;
7. (3a — 2)(3a + 2) + (a + 8)(a — 8) = 9a² — 4 + a² — 64 = 10a² — 68;
8. (2a — 3b)² + (7a — 9b)b = 4a² — 12ab + 9b² + 7ab — 9b² = 4a² — 5ab;
9. (4x + 2)² — (3x + 2)² = (4x + 2 — 3x — 2)(4x + 2 + 3x + 2) = x * (7x + 4) = 7x² + 4x.
1 ученик - А
2 ученик - Б
Получаем:
А Б
4 5
5 4
5 5
4 4
В итоге,существует расставить 2 ученикам 2 оценки (4 и 5).
А если прибавить к ним еще одного ученика - С. То:
А Б С
4 4 4
5 5 5
4 4 5
4 5 5
5 5 4
5 4 4
4 5 4
5 4 5
В итоге получаем
А что если, оставим тех же 2 учеников, но добавим 1 оценку - 3?
А вот что получим:
А Б
3 3
4 4
5 5
3 4
4 3
4 5
5 4
3 5
5 3
В итоге, мы получили
Нет смысла, добавлять 3 ученика. Уже и так можно увидеть закономерность.
В 1 раз, мы имели 2 ученика и 2 оценки, отметим это как:
В 2 раз, мы имели 3 ученика и 2 оценки, отметим это как:
В 3 раз, мы имели 2 ученика и 3 оценки, отметим это как:
А теперь, выведем формулу:
- где a-число оценок, b-число учеников.
В итоге и получаем:
1 случай:
2 случай:
3 случай:
Теперь, вычислим наш случай в задаче. Есть 24 ученика = b, и 4 оценки=a (2,3,4,5).
Отсюда:
Второй
Для первого ученика существует 4 варианта:
2,3,4,5
Для второго ученика существует 4 варианта на каждый вариант первого ученика.
То есть:
- варианта событий.
Для третьего ученика существует 4 варианта на каждый вариант второго ученика.
То есть:
- варианта событий.
И так далее. В итоге получаем, что для 24 учеников существует ровно:
- вариантов событий.