Так как учителя запрещают использовать примерное значение корня из 6,то: 1)Берем из данного выражения число с корнем,в нашем случае √6 Помещаем его в границы чисел,из которых извлекается полный квадратный корень,т.е. <√6< 2<√6<3
Теперь надо преобразовать √6 так,чтобы получить исходное выражение,числа слева и справа,конечно же,тоже будут меняться.
2)Умножим всё на 5 10<5√6<15
3)прибавляем 1 11<5√6+1<16 ответ: число 5√6 +1 расположено между числами 11 и 16. ------------------------------- (√11+1) в квадрате =11+2√11+1=2√11+12 Используя ту же схему получаем: 1) <√11< 3<√11<4
2)умножаем на 2 6<2√11<8
3)прибавляем 12 18<2√11+12<20 18<(√11+1) в квадрате<20 ответ: число (√11+1) в квадрате находится между числами 18 и 20
1)Берем из данного выражения число с корнем,в нашем случае √6
Помещаем его в границы чисел,из которых извлекается полный квадратный корень,т.е.
<√6<
2<√6<3
Теперь надо преобразовать √6 так,чтобы получить исходное выражение,числа слева и справа,конечно же,тоже будут меняться.
2)Умножим всё на 5
10<5√6<15
3)прибавляем 1
11<5√6+1<16
ответ: число 5√6 +1 расположено между числами 11 и 16.
-------------------------------
(√11+1) в квадрате =11+2√11+1=2√11+12
Используя ту же схему получаем:
1) <√11<
3<√11<4
2)умножаем на 2
6<2√11<8
3)прибавляем 12
18<2√11+12<20
18<(√11+1) в квадрате<20
ответ: число (√11+1) в квадрате находится между числами 18 и 20
Решение / ответ:
1) 5x¹⁷ ÷ x¹³ - 16x⁴ =
= 5x¹⁷⁻¹³ - 16x⁴ =
= 5x⁴ - 16x⁴ =
= - 11x⁴.
При x = - 1,
- 11x⁴ = - 11 × (- 1)⁴ = - 11 × 1 = - 11.
2) - 33y⁶ ÷ y⁴ + 37y² =
= - 33y⁶⁻⁴ + 37y² =
= - 33y² + 37y² =
= 4y².
При y = 0,5 ,
4y² = 4 × (0,5)² = 4 × 0,25 = 1.
3) 15z⁹ ÷ z⁶ - 160z³ =
= 15z⁹⁻⁶ - 160z³ =
= 15z³ - 160z³ =
= - 145z³.
При z = - 0,5 ,
- 145z³ = - 145 × (- 0,5)³ = - 145 × (- 0,125) =
= 18,125.
4) 250t⁸ ÷ t⁵ + 6t³ =
= 250t⁸⁻⁵ + 6t³ =
= 250t³ + 6t³ =
= 256t³.
При t = - 4t,
t = - 4t;
t + 4 t = 0;
5t = 0;
t = 0 ÷ 5;
t = 0.
256t³ = 256 × (0)³ = 256 × 0 =
= 0.
Удачи! :)