В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Артём89535014367
Артём89535014367
11.05.2023 19:47 •  Алгебра

Выяснить является ли данная функция четной или нечетной y = |x| - cosx

Показать ответ
Ответ:
taisijaljalko
taisijaljalko
23.05.2020 15:18
Нет, не правильно. Хотя ответ верный.
Это задача на размещение без повторений, т.е. при данном размещении 1 человек не может в одной и той же комбинации занять 2 места сразу.
(То, что Вы написали P₄=4! - в размещении используется только тогда, когда число размещений равно числу объектов - формула А₄⁴=P₄=4!),  фоа здесь используем формулу размещения:
 А³₄=4!/(4-3)!=4!/1!=4*3*2=24
4*3*2 - означает, что в каждой комбинации 1-ый человек может выбрать                любое из 4-х мест,
             2-ой - любое из 3-х оставшихся,
              3-й - любое из 2-х оставшихся
0,0(0 оценок)
Ответ:
aruukealtymysh
aruukealtymysh
15.03.2022 08:34
Из первого равенства очевидным образом следуют неравенства |x| \ \textless \ 1, |y| \ \textless \ 1
Отсюда легко убедиться в справедливости неравенства под номером 2. Для этого достаточно обе части неравенства |y| \ \textless \ 1 возвести в квадрат, получив, y^{2} \ \textless \ 1, что и требовалось проверить.

Первое неравенство можно проверить, например, следующим образом. Представим первое равенство следующим образом:
x^{2} + y^{2} = 1 \\ (x+y)^{2} - 2xy = 1 \\ (x+y)^{2} = 1 + 2xy
Поскольку x > 0, y > 0, то 2xy > 0, а 1 + 2xy > 1. Значит, и (x+y)^{2} \ \textgreater \ 1
Поскольку x + y > 0, то из последнего неравенства следует неравенство x + y  > 1, что и требовалось доказать.

Последние два неравенства неверные. Сначала заметим, что из неравенства |x| \ \textless \ 1, |y| \ \textless \ 1, следует, что 0 <x < 1, 0 < y < 1
Можно доказать, что куб таких чисел меньше квадрата, в третьем же неравенстве наоборот всё.
Аналогично, куб числа от 0 до единицы всегда меньше самого числа. Эти утверждения очевидны. Поэтому неравенства 3 и 4 неверны. Выбрать какой-то один вариант тут не получится.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота