В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
ilyusha462782
ilyusha462782
13.05.2020 12:52 •  Алгебра

Выяснить, является ли прогрессией последовательность, заданная формулой n-го члена: xn=(2\3)^2n

Показать ответ
Ответ:
mashadumbrava1
mashadumbrava1
10.07.2020 09:57
x_n= \bigg(\dfrac{2}{3} \bigg)^{2n}

Найдем первые три члена

x_1=\dfrac{2^2}{3^2} \\ \\ \\ x_2=\dfrac{2^4}{3^4} \\ \\ \\ x_3=\dfrac{2^6}{3^6}

Очевидно, что данная последовательность является геометрической прогрессии, знаменатель которого q=\dfrac{x_2}{x_1} =\dfrac{4}{9} умножается на каждый член.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота