Выяснить, являются ли следующие рассуждения логически правильными: если целое число делится на шесть, то сумма его цифр делится на три.
Сумма цифр какого-то числа делится на три. Следовательно, это число
делится на шесть;
если целое число делится на шесть, то сумма его цифр делится на три.
Сумма цифр какого-то числа не делится на три. Следовательно, это число не
делится на шесть
(для этого представить каждое предложение в виде пропозиционной формы
и проверить, является ли заключение логическим следствием конъюнкции
посылок)
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
Нули функции будут в точках: 4; 1,5; 2/3 (просто приравнять уравнения в скобках к нулю)
Отмечаем нули функции на координатной прямой в порядке их возрастания. Все точки выколоты, т.к. неравенство строгое. Для того чтобы узнать как расположить знаки под интервалами выбираем произвольное число кроме тех, которые являются нулями функции.
Возьмем, например, 0.
Если х = 0, то
3*0-2= -2 (знак отрицательный)
0-4= -4 (знак отрицательный)
3-2*0 = 3 (знак положительный)
Перемножаем все числа (-2)(-4)*3 = 24 (знак положительный) => под интервалом будет "+".
Нуль находится в пределах от минус бесконечности до 2/3. Ставим там "+". Далее знаки чередуются.
Теперь нам нужен ответ. Т.к. у нас < следовательно нам нужно все что меньше нуля, тобишь под знаком "-". Выписываем интервалы и получаем конечный ответ.