В основе метода математической индукции (ММИ) лежит принцип математической индукции: утверждение $P(n)$ (где $n$ - натуральное число) справедливо при $\forall n \in N$, если:
Утверждение $P(n)$ справедливо при $n=1$.
Для $\forall k \in N$ из справедливости $P(k)$ следует справедливость $P(k+1)$.
Доказательство с метода математической индукции проводится в два этапа:
База индукции (базис индукции). Проверяется истинность утверждения при $n=1$ (или любом другом подходящем значении $n$)
Индуктивный переход (шаг индукции). Считая, что справедливо утверждение $P(k)$ при $n=k$, проверяется истинность утверждения $P(k+1)$ при $n=k+1$.
Метод математической индукции применяется в разных типах задач:
Який многочлен треба відняти від многочлена 3c5 – 2c4 + 14c3 – 4c2 + c, щоб їхня різниця тотожно дорівнювала многочлену 5c3 + c2 – 7c?
3c5 – 2c4 + 9c3 – 5c2 + 8c
Знайдіть значення виразу:
2a(3a – 5) – 4a(4a – 5), якщо a = -0,2
-2,4
Обчисліть значення виразу, використовуючи винесення спільного множника за дужки: 2,49 ∙ 1,35 – 1,35 ∙1,84 + 1,352
Нинаю
Сторона квадрата на 3 см менша від однієї зі сторін прямокутника та на 5 см більша за його другу сторону. Знайдіть сторону квадрата, якщо його площа на 45 см2 більша за площу даного прямокутника.
15
Розв’яжіть рівняння, використовуючи розкладання на множники:
Объяснение:
В основе метода математической индукции (ММИ) лежит принцип математической индукции: утверждение $P(n)$ (где $n$ - натуральное число) справедливо при $\forall n \in N$, если:
Утверждение $P(n)$ справедливо при $n=1$.
Для $\forall k \in N$ из справедливости $P(k)$ следует справедливость $P(k+1)$.
Доказательство с метода математической индукции проводится в два этапа:
База индукции (базис индукции). Проверяется истинность утверждения при $n=1$ (или любом другом подходящем значении $n$)
Индуктивный переход (шаг индукции). Считая, что справедливо утверждение $P(k)$ при $n=k$, проверяется истинность утверждения $P(k+1)$ при $n=k+1$.
Метод математической индукции применяется в разных типах задач:
Доказательство делимости и кратности
Доказательство равенств и тождеств
Задачи с последовательностями
Доказательство неравенств
Нахождение суммы и произведения
Який многочлен треба відняти від многочлена 3c5 – 2c4 + 14c3 – 4c2 + c, щоб їхня різниця тотожно дорівнювала многочлену 5c3 + c2 – 7c?
3c5 – 2c4 + 9c3 – 5c2 + 8c
Знайдіть значення виразу:
2a(3a – 5) – 4a(4a – 5), якщо a = -0,2
-2,4
Обчисліть значення виразу, використовуючи винесення спільного множника за дужки: 2,49 ∙ 1,35 – 1,35 ∙1,84 + 1,352
Нинаю
Сторона квадрата на 3 см менша від однієї зі сторін прямокутника та на 5 см більша за його другу сторону. Знайдіть сторону квадрата, якщо його площа на 45 см2 більша за площу даного прямокутника.
15
Розв’яжіть рівняння, використовуючи розкладання на множники:
(х – 3)(х + 7) – (х + 7)(х – 8) = 0
-7
Объяснение: