Пусть доля кислоты в первом сосуде - х, тогда масса кислоты в первом сосуде - 30х кг. Пусть доля кислоты во втором сосуде - у, тогда масса кислоты во втором сосуде - 20х кг.
// Составим уравнения:
30х + 20у = 50 * 0.68 = 34;
20х + 20у = 40 * 0.7 = 28;
// Решим систему уравнений, вычтя второе из первого:
/30х + 20у = 34;
\20x + 20y = 28;
10x = 6 => x = 0.6 (значит доля кислоты в первом сосуде - 60%);
// подставим найденный х, чтобы найти у:
20 * 0.6 + 20у = 28;
12 + 20у = 28;
20у = 16 => у = 0.8 (значит доля кислоты во втором сосуде - 80%);
Чтобы узнать сколько килограммов кислоты находится в первом сосуде необходимо перемножить вес раствора из первого сосуда на долю, то есть:
30 * 0.6 = 18 (кг) - кислоты в первом сосуде;
Чтобы узнать на сколько % масса воды во втором растворе меньше массы кислоты, необходимо вычислить массу воды и кислоты:
20 * 0.8 = 16 (кг) - кислоты во втором сосуде;
20 - 16 = 4 (кг) - воды во втором сосуде; 4 / 16 = 0.25 = 25% - доля массы воды от массы кислоты;
100 - 25 = 75 - на столько % масса воды меньше массы кислоты;
Мы выразили у, теперь подставим вместо него полученное выражение:
6x - 3xy = 54
6x - 3x (5-3x) = 54
Раскроем скобки:
6x - 15x + 9x² = 54
9x² - 9x - 54 = 0 /9
x² - x - 6 = 0
Теперь решим это квадратное уравнение (решу двумя : через дискриминант и через теорему Виета)
1. x² - x - 6 = 0
x₁ + x₂ = 1 | x₁ = 3
| по теореме Виета =>
x₁ * x₂ = -6 | x₂ = -2
2. x² - x - 6 = 0
D = 1 + 24 = 25 (5²)
x₁ = (1 + 5) / 2 = 6/2 = 3
x₂ = (1 - 5) / 2 = -4 / 2 = -2
В этом пункте можно выбрать любой удобный решения. Итак, мы получили два х, а значит и у будет также два. Подставим оба значения х, чтобы найти значение у:
Пусть доля кислоты в первом сосуде - х, тогда масса кислоты в первом сосуде - 30х кг. Пусть доля кислоты во втором сосуде - у, тогда масса кислоты во втором сосуде - 20х кг.
// Составим уравнения:
30х + 20у = 50 * 0.68 = 34;
20х + 20у = 40 * 0.7 = 28;
// Решим систему уравнений, вычтя второе из первого:
/30х + 20у = 34;
\20x + 20y = 28;
10x = 6 => x = 0.6 (значит доля кислоты в первом сосуде - 60%);
// подставим найденный х, чтобы найти у:
20 * 0.6 + 20у = 28;
12 + 20у = 28;
20у = 16 => у = 0.8 (значит доля кислоты во втором сосуде - 80%);
Чтобы узнать сколько килограммов кислоты находится в первом сосуде необходимо перемножить вес раствора из первого сосуда на долю, то есть:
30 * 0.6 = 18 (кг) - кислоты в первом сосуде;
Чтобы узнать на сколько % масса воды во втором растворе меньше массы кислоты, необходимо вычислить массу воды и кислоты:
20 * 0.8 = 16 (кг) - кислоты во втором сосуде;
20 - 16 = 4 (кг) - воды во втором сосуде;
4 / 16 = 0.25 = 25% - доля массы воды от массы кислоты;
100 - 25 = 75 - на столько % масса воды меньше массы кислоты;
ответ: 18 кг, на 75%.
Эта система немного сложнее и проще предыдущей.
Рассмотрим первое уравнение:
7y + 21x = 35 /7
y + 3x = 5
y = 5 - 3x
Мы выразили у, теперь подставим вместо него полученное выражение:
6x - 3xy = 54
6x - 3x (5-3x) = 54
Раскроем скобки:
6x - 15x + 9x² = 54
9x² - 9x - 54 = 0 /9
x² - x - 6 = 0
Теперь решим это квадратное уравнение (решу двумя : через дискриминант и через теорему Виета)
1. x² - x - 6 = 0
x₁ + x₂ = 1 | x₁ = 3
| по теореме Виета =>
x₁ * x₂ = -6 | x₂ = -2
2. x² - x - 6 = 0
D = 1 + 24 = 25 (5²)
x₁ = (1 + 5) / 2 = 6/2 = 3
x₂ = (1 - 5) / 2 = -4 / 2 = -2
В этом пункте можно выбрать любой удобный решения. Итак, мы получили два х, а значит и у будет также два. Подставим оба значения х, чтобы найти значение у:
X₁. y = 5 - 3x
y = 5 - 3*3
y = 5 - 9
y = -4
X₂. y = 5 - 3x
y = 5 + 3*2
y = 5 + 6
y = 11
Таким образом у нас получилось две пары корней.
ответ: х₁ = 3; y₁ = -4 и x₂ = -2; y₂ = 11