В первую очередь необходимо проверить, меняет ли функция знак при переходе через границу каждого интервала. Далее берем произвольную точку, из одного интервала и определяем знак функции на нем. Далее последовательно движемся по интервалам и меняем или нет знак функции в зависимости от того, меняется он при переходе через границу или нет. При возникновении сомнений проверяем себя подставляя произвольную точку из интервала и смотрим знак функции.
Например рассмотрим функцию f(x)=x²(x-20)/(x+5) f(x)=0 при х= -5, 0, 20 значит у нас 4 интервала (-∞;-5], [-5;0], [0;20] и [20;+∞) Но обратим внимание, что в точке х=0 знак не меняется, так как х² всегда ≥0 Рассмотрим первый интервал (-∞;-5] Берем любой x <-5, например -100 (-100)²>0 (-100-20)<0 (-100+5)<0 значит f(-100)>0 На интервале (-∞;-5] f(x)≥0
при переходе через точку х=-5, выражение (х+5) становится положительным, поэтому на интервале [-5;0] f(x)≤0
при переходе через точку х=0, знак функции не меняется, поэтому на интервале [0;20] f(x)≤0
при переходе через точку х=20, выражение (х-20) становится положительным, поэтому на интервале [20;+∞) f(x)≥0
Чтобы найти нули функции, заданной формулой y=f(x), надо решить уравнение f(x)=0.
А) f(x) = x² - 7x + 10
x² - 7x + 10 = 0
Корни уравнения находим по теореме Виета:
ответ: x₁ = 5, x₂ = 2
Б) f(x) = -x² + 5x - 7
-x² + 5x - 7 = 0
D = b² − 4ac = 5² - 4 * (-1) * (-7) = 25 - 28 = -3
ответ: нулей нет, т.к. D < 0
В) f(x) = 2x² - 8x - 8
2x² - 8x - 8 = 0
D = b² − 4ac = 64 + 4 * 2 * 8 = 64 + 64 = 128
ответ: x₁ = 2 + 2√2, x₂ = 2 - 2√2.
Г) f(x) = 6x² - 5x + 1
6x² - 5x + 1 = 0
D = b² − 4ac = 25 - 4 * 6 * 1 = 25 - 24 = 1
ответ: x₁ = 1/2, x₂ = 1/3.
Далее берем произвольную точку, из одного интервала и определяем знак функции на нем.
Далее последовательно движемся по интервалам и меняем или нет знак функции в зависимости от того, меняется он при переходе через границу или нет.
При возникновении сомнений проверяем себя подставляя произвольную точку из интервала и смотрим знак функции.
Например рассмотрим функцию f(x)=x²(x-20)/(x+5)
f(x)=0 при х= -5, 0, 20
значит у нас 4 интервала (-∞;-5], [-5;0], [0;20] и [20;+∞)
Но обратим внимание, что в точке х=0 знак не меняется, так как х² всегда ≥0
Рассмотрим первый интервал (-∞;-5]
Берем любой x <-5, например -100
(-100)²>0
(-100-20)<0
(-100+5)<0
значит f(-100)>0
На интервале (-∞;-5] f(x)≥0
при переходе через точку х=-5, выражение (х+5) становится
положительным, поэтому на интервале [-5;0] f(x)≤0
при переходе через точку х=0, знак функции не меняется, поэтому на интервале [0;20] f(x)≤0
при переходе через точку х=20, выражение (х-20) становится
положительным, поэтому на интервале [20;+∞) f(x)≥0