{1;3;5;...;99} -множество нечётных чисел меньших 100 Сколько их? а₁=1; a₂=3 => d=a₂-a₁=3-1=2 a(n)=99 a(n)=a₁+d(n-1) 1+2(n-1)=99 2(n-1)=98 n-1=49 n=50 - количество нечётных чисел меньших 100
{3;9;15;...;99} - множество нечётных чисел кратных числу 3 и меньших 100 Сколько их? a₁=3, a₂=9 => d=a₂-a₁=9-3=6 a(m)=99 a(m)=a₁+d(m-1) 3+6(m-1)=99 6(m-1)=96 m-1=16 m=17 - количество нечётных чисел кратных числу 3 и меньших 100
{5;15;25;...;95} - множество нечётных чисел кратных числу 5 и меньших 100 а₁=5; а₂=15 => d=a₂-a₁=15-5=10 a(p)=a₁+d(p-1) 5+10(p-1)=95 10(p-1)=90 p-1=9 p=10 - количество нечётных чисел кратных числу 5 и меньших 100
Среди нечётных чисел кратных числам 3 и 5 одновременно встречаются числа 15; 45 и 75 (всего их 3) Общее количество нечётных натуральных чисел, делящихся на 3 или на 5: m+p-3=17+10-3=24
Количество нечётных натуральных чисел, которые не делятся ни на 3, ни на 5 равно: 50-24=26
Найти первый положительный член арифметической прогрессии -10,2; -8,3; ...
Арифметическая прогрессия - это последовательность чисел, каждый член которой, начиная со второго, равен предыдущему, увеличенному на одно и тоже число (разность арифметической прогрессии, обозначается d).
По условию а₁ = -10,2, a₂ = -8,3, тогда d = a₂ - a₁ = -8,3 - (-10,2) = -8,3 + 10,2 = 10,2 - 8,3 = 1,9.
an = a₁ + d(n - 1) - формула n-го члена
По условию аn > 0, поэтому решим получившееся неравенство
Сколько их?
а₁=1; a₂=3 => d=a₂-a₁=3-1=2
a(n)=99
a(n)=a₁+d(n-1)
1+2(n-1)=99
2(n-1)=98
n-1=49
n=50 - количество нечётных чисел меньших 100
{3;9;15;...;99} - множество нечётных чисел кратных числу 3 и меньших 100
Сколько их?
a₁=3, a₂=9 => d=a₂-a₁=9-3=6
a(m)=99
a(m)=a₁+d(m-1)
3+6(m-1)=99
6(m-1)=96
m-1=16
m=17 - количество нечётных чисел кратных числу 3 и меньших 100
{5;15;25;...;95} - множество нечётных чисел кратных числу 5 и меньших 100
а₁=5; а₂=15 => d=a₂-a₁=15-5=10
a(p)=a₁+d(p-1)
5+10(p-1)=95
10(p-1)=90
p-1=9
p=10 - количество нечётных чисел кратных числу 5 и меньших 100
Среди нечётных чисел кратных числам 3 и 5 одновременно встречаются числа 15; 45 и 75 (всего их 3)
Общее количество нечётных натуральных чисел, делящихся на 3 или на 5:
m+p-3=17+10-3=24
Количество нечётных натуральных чисел, которые не делятся ни на 3, ни на 5 равно: 50-24=26
ответ: 26
Найти первый положительный член арифметической прогрессии -10,2; -8,3; ...
Арифметическая прогрессия - это последовательность чисел, каждый член которой, начиная со второго, равен предыдущему, увеличенному на одно и тоже число (разность арифметической прогрессии, обозначается d).
По условию а₁ = -10,2, a₂ = -8,3, тогда d = a₂ - a₁ = -8,3 - (-10,2) = -8,3 + 10,2 = 10,2 - 8,3 = 1,9.
an = a₁ + d(n - 1) - формула n-го члена
По условию аn > 0, поэтому решим получившееся неравенство
-10,2 + 1,9(n - 1) > 0,
-10,2 + 1,9n - 1,9 > 0,
1,9n - 12,1 > 0,
1,9n > 12,1,
19n > 121,
n > 121/19 = 6 целых 7/19.
Значит, n = 7.
Найдем а₇:
а₇ = -10,2 + 1,9(7 - 1) = -10,2 + 1,9 · 6 = -10,2 + 11,4 = 11,4 - 10,2 = 1,2.
ответ: 1,2.