Решение с формулы n-члена арифметической прогрессии:
a₁=16
d=-1.1
a(n)=0 - остановка
a(n)=a₁+d(n-1)
16+(-1.1)(n-1)=0
16-1.1n+1.1=0
-1.1n=-17.1
n=15.(54)
Поскольку n - всегда целое число, значение 0 не является членом данной арифметической прогрессии. Тем не менее, выяснилось, что для полного торможения (остановки), потребуется 15.(54) сек.
a1 = -9.6
a2 = -8.3
d = a2 - a1 = -8.3 - ( -9.6) = 1,3
аn = a1 + (n - 1)d ≥ 0
-9.6 + (n - 1)*1,3 ≥ 0
-9.6 + 1,3n - 1,3 ≥ 0
1,3n - 10,9 ≥ 0
1,3n ≥ 10,9
n ≥ 10,9 / 1,3
n ≥ 8,38... => номер первого неотрицательного члена прогрессии n = 9
Значит первые восемь её членов отрицательны. Найдем их сумму:
Sn = 2a1 + (n - 1)d * n
2
S8 = 2*( -9.6) + 7*1,3 * 8 = ( -19,2 + 9,1)* 4 = ( -10,1)* 4 = - 40,4
2
ОТВЕТ: -40,4
Дано:
Торможение:
1-я сек. - 16 м
каждая следующая сек. на 1.1 м меньше
Найти: ? полных сек. для остановки
Решение с формулы n-члена арифметической прогрессии:
a₁=16
d=-1.1
a(n)=0 - остановка
a(n)=a₁+d(n-1)
16+(-1.1)(n-1)=0
16-1.1n+1.1=0
-1.1n=-17.1
n=15.(54)
Поскольку n - всегда целое число, значение 0 не является членом данной арифметической прогрессии. Тем не менее, выяснилось, что для полного торможения (остановки), потребуется 15.(54) сек.
Округляем до целых секунд: 15.(54)≈16 сек.
ответ: полных 16 сек. потребуется