1). Решаем второе неравенство.
b - 3 > 4
b - 3 + 3 > 4 + 3 (к обеим частям неравенства прибавили число 3, поэтому знак неравенстве не изменился)
b > 7 (упростили)
2) Сложим первое неравенство a>b+2 с полученным вторым b>7 и получим.
a+b>b+2+7
Приведем подобные члены и получим:
a+b>b+9
Вычтем из обеих частей неравенства число b, при этом знак неравенстве не изменится
a+b-b>b+9-b
и получим, наконец, a>9
1) Сложим данные неравенства
a>b+2
+
b-3>4,
2) Получим
a+b-3>b+2+4
3) Упростим полученное неравенство
a+b-3>b+6
4) К обеим частям неравенства прибавим выражение (3-b), при этом знак неравенстве не изменится
a+b-3+3-b>b+6+3-b
5) Приведем подобные члены и получим:
a>9
Доказано.
Формулы общего вида(1) Формула понижения nй четной степени синусаsin^n(\alpha) = \frac{C_{\frac{n}{2}}^{n}}{2^n} + \frac{1}{2^{n-1}} \sum_{k=0}^{\frac{n}{2}-1} (-1)^{\frac{n}{2}-k} C_{k}^{n}cos((n-2k)\alpha)sinn(α)=2nC2nn+2n−11∑k=02n−1(−1)2n−kCkncos((n−2k)α)(2) Формула понижения nй четной степени косинусаcos^n(\alpha) = \frac{C_{\frac{n}{2}}^{n}}{2^n} + \frac{1}{2^{n-1}} \sum_{k=0}^{\frac{n}{2}-1} C_{k}^{n}cos((n-2k)\alpha)cosn(α)=2nC2nn+2n−11∑k=02n−1Ckncos((n−2k)α)(3) Формула понижения nй нечетной степени синусаsin^n(\alpha) = \frac{1}{2^{n-1}} \sum_{k=0}^{\frac{n-1}{2}} (-1)^{\frac{n-1}{2}-k} C_{k}^{n}sin((n-2k)\alpha)sinn(α)=2n−11∑k=02n−1(−1)2n−1−kCknsin((n−2k)α)(4) Формула понижения nй нечетной степени косинусаcos^n(\alpha) = \frac{1}{2^{n-1}} \sum_{k=0}^{\frac{n-1}{2}} C_{k}^{n}cos((n-2k)\alpha)cosn(α)=2n−11∑k=02n−1Ckncos((n−2k)α)
1). Решаем второе неравенство.
b - 3 > 4
b - 3 + 3 > 4 + 3 (к обеим частям неравенства прибавили число 3, поэтому знак неравенстве не изменился)
b > 7 (упростили)
2) Сложим первое неравенство a>b+2 с полученным вторым b>7 и получим.
a+b>b+2+7
Приведем подобные члены и получим:
a+b>b+9
Вычтем из обеих частей неравенства число b, при этом знак неравенстве не изменится
a+b-b>b+9-b
и получим, наконец, a>9
1) Сложим данные неравенства
a>b+2
+
b-3>4,
2) Получим
a+b-3>b+2+4
3) Упростим полученное неравенство
a+b-3>b+6
4) К обеим частям неравенства прибавим выражение (3-b), при этом знак неравенстве не изменится
a+b-3+3-b>b+6+3-b
5) Приведем подобные члены и получим:
a>9
Доказано.