Метод интервалов – простой решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной. Метод интервалов позволяет решить его за пару минут.В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.Метод интервалов основан на следующем свойстве дробно-рациональной функции.Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Найдем нули функции в левой части нашего неравенства. Для этого разложим числитель на множители. Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида . Рисуем ось и расставляем точки, в которых числитель и знаменатель обращаются в нуль.Эти точки разбивают ось на N промежутков.Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным — либо «плюс», либо «минус».
Метод интервалов позволяет решить его за пару минут.В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.Метод интервалов основан на следующем свойстве дробно-рациональной функции.Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Найдем нули функции в левой части нашего неравенства. Для этого разложим числитель на множители. Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида . Рисуем ось и расставляем точки, в которых числитель и знаменатель обращаются в нуль.Эти точки разбивают ось на N промежутков.Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным — либо «плюс», либо «минус».
Количество страниц учебной работы: 0
Содержание:
ответы на тест
Задание 1
Во Какая система счисления использовалась в первых ЭВМ для кодирования информации?
1) десятичная;
2) двоичная;
3) троичная;
4) пятеричная;
5) семеричная.
Во Какое это число: 2 • 73 + 3 • 72 + 5 • 7 + 6?
1) (874)10;
2) (2356)7;
3) (11444)5;
4) все предыдущие ответы верны;
5) нет правильного ответа.
Во Запишите в римской нумерологии число 1510:
1) MDX;
2) IMDX;
3) XDM;
4) IMVCX;
5) MVMX.
Во Можно ли выполнить арифметическое действие с числами, записанными в разных системах счисления? (выберите наиболее общий ответ):
1) да, если оба числа записать в системе одного из них;
2) да, если оба числа записать в десятичной системе;
3) да, если оба числа записать в одной и той же системе счисления (любой);
4) нет, ни при каких условиях;
5) только сложение и вычитание.
Во Выполните действие (2562)7 –(1614)7
1) (948)7:
2) (2523)7;
3) (645)7;
4) (948)10;
5) нет правильного ответа.
Задание 2
Во Какая система счисления, вероятнее всего, не имела анатомического происхождения?
1) двоичная;
2) двенадцатеричная;
3) шестидесятеричная;
4) пятеричная;
5) все системы счисления имели анатомическое происхождение.
Во Какое из чисел записано в непозицнониой системе счисления?
1) XXII;
1) (27)g;
2) (100011)2;
3) все числа записаны в не позиционных системах счисления;
4) все числа записаны в позиционных системах счисления.
Во Какое число содержит 500 сотен?
1) 5000000;
2) 500000;
3) 50000;
4) 5000;
5) 500.
Во Сравните числа (11010)2 и (26)10:
1) (11010)2 = (2б)10;
2) (11010)2 ? (26)10;
3) (11010)2<(26)10; 4) (11010)2 >(2б)10;
5) все ответы верны.
Во Используя таблицу умножения для шестеричной системы счисления, выполните действие: (25) 6 (13)6
1) (373)6;
2) (413) 6,
3) (325)6;
2) (405)6
4) (1301)б.
Задание 3.
Во Поверхность земного шара составляет 5,1 * 108 км2. Запишите это число, используя поразрядную запись:
1) 5100000000;
2) 5 100 000 000;
3) 510000000;
4) 510 000 000;
5) 51 000 000.