Что бы построить график данной функции, исследуем данную функцию:
1. Область определения: Так как данная функция имеет смысл при любом х. То:
2. Область значения: Так как данная функция - квадратичная, а так же, главный коэффициент а положителен.То, график данной функции - парабола и ее ветви направлены вверх.
Следовательно, область значения данной квадратичной функции находится следующим образом (при а>0): - где D дискриминант.
Найдем дискриминант:
Теперь находим саму область:
3. Нули функции: Всё что требуется , это решить уравнение.
Следовательно, функция равна нулю в следующих точках:
4. Зная нули функции, найдем промежутки положительных и отрицательных значений. Чертим координатную прямую, на ней отмечаем корни уравнения, записываем 3 получившийся промежутка и находим на данных промежутках знак функции:
То есть:
5. Промежутки возрастания и убывания. Для этого найдем вершину параболы:
Промежуток убывания:
Промежуток возрастания:
Если вы изучали понятие экстремума, то: --------------------------------------------------------------- 6. Экстремум функции. Так как а>0 и функция квадратичная. То вершина является минимумом данной функции. Следовательно:
Пусть х га - площадь первого поля, у га - площадь второго поля.
{40х + 35у = 2600
{40х + 0,1 · 40х + 35у + 0,2 · 35у = 2600 + 400
- - - - - - - - - - - - - - -
{40х + 35у = 2600
{40х + 4х + 35у + 7у = 3000
- - - - - - - - - - - - - - -
{40х + 35у = 2600 - сократим обе части уравнения на 5
{44х + 42у = 3000
- - - - - - - - - - - - - - -
{8х + 7у = 520
{44х + 6 · 7у = 3000
- - - - - - - - - - - - - - -
{7у = 520 - 8х
{44х + 6 · (520 - 8х) = 3000
44х + 3120 - 48х = 3000
3120 - 3000 = 48х - 44х
120 = 4х
х = 120 : 4
х = 30 (га) - площадь первого поля
- - - - - - - - - - - - - - -
7у = 520 - 8 · 30
7у = 520 - 240
7у = 280
у = 280 : 7
у = 40 (га) - площадь второго поля
ответ: 30 га и 40 га.
Что бы построить график данной функции, исследуем данную функцию:
1. Область определения:
Так как данная функция имеет смысл при любом х. То:
2. Область значения:
Так как данная функция - квадратичная, а так же, главный коэффициент а положителен.То, график данной функции - парабола и ее ветви направлены вверх.
Следовательно, область значения данной квадратичной функции находится следующим образом (при а>0):
- где D дискриминант.
Найдем дискриминант:
Теперь находим саму область:
3. Нули функции:
Всё что требуется , это решить уравнение.
Следовательно, функция равна нулю в следующих точках:
4. Зная нули функции, найдем промежутки положительных и отрицательных значений.
Чертим координатную прямую, на ней отмечаем корни уравнения, записываем 3 получившийся промежутка и находим на данных промежутках знак функции:
То есть:
5. Промежутки возрастания и убывания.
Для этого найдем вершину параболы:
Промежуток убывания:
Промежуток возрастания:
Если вы изучали понятие экстремума, то:
---------------------------------------------------------------
6. Экстремум функции.
Так как а>0 и функция квадратичная. То вершина является минимумом данной функции.
Следовательно:
---------------------------------------------------------------
7. Ось симметрии
Зная вершину, имеем следующее уравнение оси симметрии:
Основываясь на данных, строим график данной функции. (во вложении).