Игральную кость бросают дважды. Найдите вероятность того, что хотя бы раз выпало число, меньшее 4.
Решение.
При бросании кубика равновозможны шесть различных исходов. Событию "выпадет меньше четырёх очков" удовлетворяет три случая: когда на кубике выпадает 1, 2, или 3 очка. Поэтому вероятность того, что на кубике выпадет меньше четырёх очков равна 3/6=0,5 Таким образом, при одном бросании кубика с одинаковой вероятностью реализуется либо событие А — выпало число, меньшее 4, либо событие Б — выпало число не меньше 4. То есть равновероятно реализуются четыре события: А-А, А-Б, Б-А, Б-Б. Поэтому вероятность того, что хотя бы раз выпало число, меньшее 4 равна 3/4=0,75
ответ: 0,75.
с моим вариантом решения всегда прокатывает, так им пользуюсь
1. 2 целых 10/14;
2. в) 5x² - x + 1 = 0
Пошаговое объяснение:
1. 7x² - 19x + 4 = 0
D = b² - 4ac
D = -19² - 4 * 7 * 4 = 361 - 112 = 249
x₁ = (-b + √D)/2a
x₁ = (19 + √249)/2 * 7
x₂ = (-b - √D)/2a
x₂ = (19 - √249)/2 * 7
Сумма корней = x₁ + x₂
(19 + √249)/2 * 7 + (19 - √249)/2 * 7 = (19 + √249 + 19 - √249)/14 = 38/14 = 2 целых 10/14
2. Квадратное уравнение не имеет корней, если его дискриминант отрицательный (Формула дискриминанта выше). Проверим каждое уравнение:
a) 4x² - 3x - 4 = 0
D = 9 - 4 * 4 * (-4) = 9 + 64 = 73 ==> имеет корни;
б) x² + 4x + 3 = 0
D = 16 - 4 * 3 = 16 - 12 = 4 ==> имеет корни;
в) 5x² - x + 1 = 0
D = 1 - 4 * 5 * 1 = 1 - 20 = -19 < 0 ==> не имеет корней.
решал это задание в огэ
я решал так:
выпадает 1, 2, 3, 4, 5, 6
нужно меньше 4х
это 1 2 и 3
кинули дважды
3*3=9 6*6=36
9/36=0,25
1-0,25=0,75
таково объяснение дано в ответе к заданию огэ
Задание 9 № 325497 Добавить в вариант
Игральную кость бросают дважды. Найдите вероятность того, что хотя бы раз выпало число, меньшее 4.
Решение.
При бросании кубика равновозможны шесть различных исходов. Событию "выпадет меньше четырёх очков" удовлетворяет три случая: когда на кубике выпадает 1, 2, или 3 очка. Поэтому вероятность того, что на кубике выпадет меньше четырёх очков равна 3/6=0,5 Таким образом, при одном бросании кубика с одинаковой вероятностью реализуется либо событие А — выпало число, меньшее 4, либо событие Б — выпало число не меньше 4. То есть равновероятно реализуются четыре события: А-А, А-Б, Б-А, Б-Б. Поэтому вероятность того, что хотя бы раз выпало число, меньшее 4 равна 3/4=0,75
ответ: 0,75.
с моим вариантом решения всегда прокатывает, так им пользуюсь