Найдем точки пересечения окружности и прямой, подставив в уравнение окружности y=-x: x²+(-x)²+4x+4x=0⇒2x²+8x=0⇒2x(x+4)=0⇒x₁=0; x₂=-4 итак, точки пересечения: A(0;0), B(-4;4) cоставим систему уравнений, подставив в общее уравнение окружности (x-a)²+(y-b)²=r₂ координаты точек A, B, M₁ (0-a)²+(0-b)²=r₂ (-4-a)²+(4-b)²=r² (4-a)²+(4-b)²=r² отнимем от второго уравнения третье a²+b²=r² (4+a)²-(4-a)²=0⇒16+8a+a²-16+8a-a²=0⇒16a=0⇒a=0 подставим во все уравнения a=0 b²=r² 16+(4-b)²=r² 16+(4-b)²=r² подставим во второе уравнение r²=b² b²=r² 16+16-8b+b²=b²⇒32-8b+b²-b²⇒8b=32⇒b=4 имеем решение системы a=0; b=4; r=4 уравнение окружности x²+(y-4)²=4²
1. Преобразуем уравнение:
4х^2 + 12х + 12/х + 4/х^2 = 47;
4(х^2 + 2 + 1/x^2) - 8 + 12(х + 1/х) - 47 = 0;
4(х + 1/x)^2 + 12(х + 1/х) - 55 = 0.
2. Замена:
х + 1/x = t;
4t^2 + 12t - 55 = 0;
D/4 = 6^2 + 4 * 55 = 36 + 220 = 256 = 16^2;
t = (-6 ± 16)/4;
t1 = (-6 - 16)/4 = -22/4 = -11/2;
t2 = (-6 + 16)/4 = 10/4 = 5/2.
3. Обратная замена:
х + 1/x = t;
х^2 + 1 = tx;
х^2 - tx + 1 = 0;
1) t = -11/2;
х^2 + 11/2 * x + 1 = 0;
2х^2 + 11x + 2 = 0;
D = 11^2 - 4 * 2 * 2 = 121 - 16 = 105;
x1/2 = (-11 ± √105)/4;
2) t = 5/2;
х^2 - 5/2 * x + 1 = 0;
2х^2 - 5x + 2 = 0;
D = 5^2 - 4 * 2 * 2 = 25 - 16 = 9;
x = (5 ± √9)/4 = (5 ± 3)/4;
x3 = (5 - 3)/4 = 2/4 = 1/2;
x4 = (5 + 3)/4 = 8/4 = 2.
ответ: (-11 ± √105)/4; 1/2; 2.
x²+(-x)²+4x+4x=0⇒2x²+8x=0⇒2x(x+4)=0⇒x₁=0; x₂=-4
итак, точки пересечения: A(0;0), B(-4;4)
cоставим систему уравнений, подставив в общее уравнение окружности
(x-a)²+(y-b)²=r₂ координаты точек A, B, M₁
(0-a)²+(0-b)²=r₂
(-4-a)²+(4-b)²=r²
(4-a)²+(4-b)²=r²
отнимем от второго уравнения третье
a²+b²=r²
(4+a)²-(4-a)²=0⇒16+8a+a²-16+8a-a²=0⇒16a=0⇒a=0
подставим во все уравнения a=0
b²=r²
16+(4-b)²=r²
16+(4-b)²=r²
подставим во второе уравнение r²=b²
b²=r²
16+16-8b+b²=b²⇒32-8b+b²-b²⇒8b=32⇒b=4
имеем решение системы a=0; b=4; r=4
уравнение окружности x²+(y-4)²=4²