2.Найдите наибольшее значение функции y=-x^2-6x+5 на промежутке [-4,-2]
y=-x^2-6x+5 y`=-2x-6 y`=0 при х=-3 - принадлежит [-4,-2] у(-4)=-(-4)^2-6*(-4)+5=13 у(-3)=-(-3)^2-6*(-3)+5=14 у(-2)=-(-2)^2-6*(-2)+5=13
наибольшее значение функции на промежутке [-4,-2] max(y)=14
3. y=корень(3) - горизонтальная прямая касательная к прямой в любой точке совпадает с прямой к оси абсцисс под углом 30 градусов касательная к прямой у=корень(3) быть не может
4. y=(x-1)^3-3(x-1) =(x-1)((x-1)^2-3)=(x-1-корень(3))*(x-1)*(x-1+корень(3)) кривая третей степени, симметричная относительно точки x=1; у=0 имеет локальный минимум и локальный максимум имеет три нуля функции имеет одну точку перегиба расчетов не привожу так как это уже 4 задание в вопросе
график во вложении
3*. - для измененнного условия y=корень(3x) y`=1/2*корень(3/x) y`=tg(pi/6)=корень(3)/3=1/2*корень(3/x)
Пусть вся дорога 1 (единица), тогда х время, за которое первая бригада может отремонтировать дорогу, а у время второй бригады. Совместная работа двух бригад 6 ч. Если первая бригада отремонтирует 3/5 дороги, то время затратит (3/5)÷(1/х)=3х/5 ; если вторая бригада отремонтирует оставшуюся часть: 1-3/5=2/5 дороги. то время затратит (2/5)÷(1/у)=2у/5 , и времени они затратят 12 часов. Составим два уравнения:
1/х+1/у=1/6
3х/5+2у/5=12
Выделим х во втором уравнении:
3х/5+2у/5=12
15х+10у=300
3х+2у=60
х=(60-2у)/3
Подставим значение х в первое уравнение:
3/(60-3у)+1/у=1/6
18у+360-12у=60у-2у²
2у²-54у+360=0
у²-27у+180=0
D=9
у₁=12 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₁=(60-2*12)/3=36/3=12 часов первая бригада может отремонтировать дорогу самостоятельно.
у₂=15 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₂=(60-2*15)/3=30/3=10 часов первая бригада может отремонтировать дорогу самостоятельно.
ответ: Или первая за 12 часов и вторая за 12 часов; Или первая за 10 часов и вторая за 15 часов.
s(t)=t^3+3t^2
v(t)=3t^2+6t
v(1)=3+6=9 м/с
a(t)=6t+6
a(1)=6+6=12 м/с2
2.Найдите наибольшее значение функции y=-x^2-6x+5 на промежутке [-4,-2]
y=-x^2-6x+5
y`=-2x-6
y`=0 при х=-3 - принадлежит [-4,-2]
у(-4)=-(-4)^2-6*(-4)+5=13
у(-3)=-(-3)^2-6*(-3)+5=14
у(-2)=-(-2)^2-6*(-2)+5=13
наибольшее значение функции на промежутке [-4,-2]
max(y)=14
3.
y=корень(3) - горизонтальная прямая
касательная к прямой в любой точке совпадает с прямой
к оси абсцисс под углом 30 градусов касательная к прямой у=корень(3) быть не может
4.
y=(x-1)^3-3(x-1) =(x-1)((x-1)^2-3)=(x-1-корень(3))*(x-1)*(x-1+корень(3))
кривая третей степени,
симметричная относительно точки x=1; у=0
имеет локальный минимум и локальный максимум
имеет три нуля функции
имеет одну точку перегиба
расчетов не привожу так как это уже 4 задание в вопросе
график во вложении
3*. - для измененнного условия
y=корень(3x)
y`=1/2*корень(3/x)
y`=tg(pi/6)=корень(3)/3=1/2*корень(3/x)
корень(х)=3/2
х=2,25 - это ответ
Пусть вся дорога 1 (единица), тогда х время, за которое первая бригада может отремонтировать дорогу, а у время второй бригады. Совместная работа двух бригад 6 ч. Если первая бригада отремонтирует 3/5 дороги, то время затратит (3/5)÷(1/х)=3х/5 ; если вторая бригада отремонтирует оставшуюся часть: 1-3/5=2/5 дороги. то время затратит (2/5)÷(1/у)=2у/5 , и времени они затратят 12 часов. Составим два уравнения:
1/х+1/у=1/6
3х/5+2у/5=12
Выделим х во втором уравнении:
3х/5+2у/5=12
15х+10у=300
3х+2у=60
х=(60-2у)/3
Подставим значение х в первое уравнение:
3/(60-3у)+1/у=1/6
18у+360-12у=60у-2у²
2у²-54у+360=0
у²-27у+180=0
D=9
у₁=12 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₁=(60-2*12)/3=36/3=12 часов первая бригада может отремонтировать дорогу самостоятельно.
у₂=15 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₂=(60-2*15)/3=30/3=10 часов первая бригада может отремонтировать дорогу самостоятельно.
ответ: Или первая за 12 часов и вторая за 12 часов; Или первая за 10 часов и вторая за 15 часов.