ответ: нет решений.
Объяснение:
Вспомним важное свойство : натуральное число дает при делении на 9 тот же самый остаток, что и cумма его цифр.
Пусть число x дает остаток p при делении на 9 ( 0<=p <=8)
Тогда число
x+ s(x) +s(s(x)) дает тот остаток при делении на 9 , что дает число 3*p
Остаток от деления 2011 на 9 равен 4 . Значит число 3p-4 должно делится на 9 :
3*p = {0;3;6;9;12;15;18;21;24}
3*p -4 = {-4;-1;2;5;8;11;14;17;20}
Ни одно из этих чисел не делится на 9.
Вывод такого x не существует.
ответ: нет решений.
Объяснение:
Вспомним важное свойство : натуральное число дает при делении на 9 тот же самый остаток, что и cумма его цифр.
Пусть число x дает остаток p при делении на 9 ( 0<=p <=8)
Тогда число
x+ s(x) +s(s(x)) дает тот остаток при делении на 9 , что дает число 3*p
Остаток от деления 2011 на 9 равен 4 . Значит число 3p-4 должно делится на 9 :
3*p = {0;3;6;9;12;15;18;21;24}
3*p -4 = {-4;-1;2;5;8;11;14;17;20}
Ни одно из этих чисел не делится на 9.
Вывод такого x не существует.