Пусть длина наименьшей стороны клумбы х м, т.к. вторая сторона длиннее на 5м, то её длина составит (х+5)м. Вокруг клумбы идёт дорожка шириной 1 м, значит длина стороны дорожки составит (1+х+5+1)=(х+7)м - широкая сторона, и меньшая сторона составит (1+х+1)м=(х+2)м. Площадь дорожки составляет 26м² и складывается из площади 4-ч прямоугольников, из которых стороны двух длинных прямоугольников равны по (х+7)м и 1м. Площадь этих прямоугольников равна и составляет S1.2=1×(х+7)м, и 2 прямоугольника со сторонами 1м и (х+2)м, и площади их равны 1×(х+2)м=(х+2)м. Вся площадь дорожки составит 2×(х+7)+2×(х+2)=26. Делим обе части уравнения на 2, получаем:
(х+7)+(х+2)=13
2х+9=13
2х=13-9
2х=4
х=2
Таким образом, наименьшая сторона клумбы равна 2м, тогда наибольшая 2+5=7м.
А (a+b)(b+c)(c+a)= если перемножать первые две скобки, то = ab+ac+b^2+bc и это умножить на третью скобку, то = (c+a)(ab+ac+b^2+bc)= abc+ac^2+b^2c+bc^2+a^2b+a^2c+ab^2+abc=
c^2(a+b)+b^2(c+a)+a^2(b+c)+2abc.
Эти два выражения равны, то есть
b^2(a+c)+c^2(a+b)+a^2(b+c)+2abc = c^2(a+b)+b^2(c+a)+a^2(b+c)+2abc то есть = (a+b)(b+c)(c+a)=(a+b)(b+c)(c+a)
(х+7)+(х+2)=13
2х+9=13
2х=13-9
2х=4
х=2
Таким образом, наименьшая сторона клумбы равна 2м, тогда наибольшая 2+5=7м.
Здесь формулы сокращенного умножения.
a(b^2+2bc+c^2)+b(c^2+2ac+a^2)+c(a^2+2ab+b^2)-4abc=
ab^2+2abc+ac^2+bc^2+2abc+ba^2+ca^2+2abc+cb^2-4abc=
ab^2+2abc+ac^2+bc^2+ba^2+ca^2+cb^2=ab^2+2abc+c^2(a+b)+a^2(b+c)+cb^2=
b^2(a+c)+c^2(a+b)+a^2(b+c)+2abc
А (a+b)(b+c)(c+a)= если перемножать первые две скобки, то = ab+ac+b^2+bc и это умножить на третью скобку, то = (c+a)(ab+ac+b^2+bc)= abc+ac^2+b^2c+bc^2+a^2b+a^2c+ab^2+abc=
c^2(a+b)+b^2(c+a)+a^2(b+c)+2abc.
Эти два выражения равны, то есть
b^2(a+c)+c^2(a+b)+a^2(b+c)+2abc = c^2(a+b)+b^2(c+a)+a^2(b+c)+2abc то есть = (a+b)(b+c)(c+a)=(a+b)(b+c)(c+a)
Желаю удачи!