Переведем все минуты в часы: 10 минут=1/6 часа 2 минуты =1/30 часа Пусть скорость поезда v км/ч, тогда время за которое должен был пройти поезд 54/v часов. Пройдя 14 км со скорость v, он затратил 14/v часов, Ему осталось пройти 54-14=40 км со скоростью (v+10) км/ч. Составим и решим уравнение: 54/v+1/30=14/v+40/(v+10)+1/6 (54-14)/v+40/(v+10)=1/6-1/30 40(v+10-v)/(v(v+10))=2/15 400*15/2=v(v+10) v²+10v-3000=0 D=10²+4*3000=12100=110² v₁=(-10+110)/2=50 км/ч v₂=(-10-110)/2=-60 <0
ответ 50 км/ч
Пусть скорость реки x км/ч, тогда скорость по течению (x+3) км/ч, а против (х-3) км/ч. Составим и решим уравнение. 4/(x-3)+25/(x+3)=1 4x+12+25x-75=x²-9 х²-29х+54=0 D=29²-4*54=625=25² х₁=(29-25)/2=2 км/ч < cкорости течения х₂=(29+25)/2=27 км/ч скорость парохода ответ 27 км/ч
Решение Пусть х изделий бригада должна была изготовить в 1 день по плану (120/х) дней - бригада должна была работать (х+2) - изделия бригада изготовляла фактически в 1 день 120/(х+2) дней - бригада работала фактически. А так как, по условию задачи, бригада закончила работу на 3 дня раньше срока, то составим уравнение: 120/х - 120/(х+2)=3 120(х+2) - 120х = 3х(х+2) 120x + 240 – 120x – 3x² – 6x = 0 3x² + 6x - 240 = 0 делим на 3 x² + 2x – 80 = 0 D = 4 + 4*1*80 = 324 x₁ = (- 2 – 18)/2 = - 10 < 0 не удовлетворяет условию задачи x₂ = (- 2 + 18)/2 = 8 8 - изделий бригада рабочих изготовляла в 1 день по плану ответ: 8 изделий
10 минут=1/6 часа
2 минуты =1/30 часа
Пусть скорость поезда v км/ч, тогда время за которое должен был пройти поезд 54/v часов. Пройдя 14 км со скорость v, он затратил 14/v часов, Ему осталось пройти 54-14=40 км со скоростью (v+10) км/ч. Составим и решим уравнение:
54/v+1/30=14/v+40/(v+10)+1/6
(54-14)/v+40/(v+10)=1/6-1/30
40(v+10-v)/(v(v+10))=2/15
400*15/2=v(v+10)
v²+10v-3000=0
D=10²+4*3000=12100=110²
v₁=(-10+110)/2=50 км/ч
v₂=(-10-110)/2=-60 <0
ответ 50 км/ч
Пусть скорость реки x км/ч, тогда скорость по течению (x+3) км/ч, а против (х-3) км/ч. Составим и решим уравнение.
4/(x-3)+25/(x+3)=1
4x+12+25x-75=x²-9
х²-29х+54=0
D=29²-4*54=625=25²
х₁=(29-25)/2=2 км/ч < cкорости течения
х₂=(29+25)/2=27 км/ч скорость парохода
ответ 27 км/ч
Пусть х изделий бригада должна была изготовить в 1 день по плану
(120/х) дней - бригада должна была работать
(х+2) - изделия бригада изготовляла фактически в 1 день
120/(х+2) дней - бригада работала фактически.
А так как, по условию задачи, бригада закончила
работу на 3 дня раньше срока, то составим уравнение:
120/х - 120/(х+2)=3
120(х+2) - 120х = 3х(х+2)
120x + 240 – 120x – 3x² – 6x = 0
3x² + 6x - 240 = 0 делим на 3
x² + 2x – 80 = 0
D = 4 + 4*1*80 = 324
x₁ = (- 2 – 18)/2 = - 10 < 0 не удовлетворяет условию задачи
x₂ = (- 2 + 18)/2 = 8
8 - изделий бригада рабочих изготовляла в 1 день по плану
ответ: 8 изделий