2) дальше, мы имеем, что x+y=17 подставим во второе уравнение:
xy-9*17+81=2 xy-153+81=2 xy=74
3)дальше, берем в систему x+y=17 и xy=74
потом, по методу подставление, находим из первого или второго уравнения переменную и подставляем во второе уравнениея из первого уравнения нашел x, x=17-y, и подставил во второе:
(17-y)y=74 17y-y^2=74 соберем все в одну сторону
y^2-17y+74=0
находим дискриминант: Д=17^2-4*74=-7
дискриминант отрицателен, значит нет решения. ответ пустое множество.
xy-9(x+y)+81=2. я вынес за скобку -9
2) дальше, мы имеем, что x+y=17 подставим во второе уравнение:
xy-9*17+81=2
xy-153+81=2
xy=74
3)дальше, берем в систему x+y=17 и xy=74
потом, по методу подставление, находим из первого или второго уравнения переменную и подставляем во второе уравнениея из первого уравнения нашел x, x=17-y, и подставил во второе:
(17-y)y=74
17y-y^2=74
соберем все в одну сторону
y^2-17y+74=0
находим дискриминант:
Д=17^2-4*74=-7
дискриминант отрицателен, значит нет решения. ответ пустое множество.
6x+3=5x-4(5y+4);
3(2x-3y)-6x=8-y;
Раскрываем скобки по распределительному закону умножения.
6х+3=5х-20у-16;
6х-9у-6х=8-у;
Переносим члены уравнения с неизвестным в левую часть, а известные в правую часть при этом изменяем знак каждого члена на противоположный.
6х-5х+20у=-3-16;
6х-9у-6х+у=8;
Приводим подобные члены уравнения в обеих частях уравнения.
х+20у=-19;
-8у=8;
Находим переменную у во втором уравнении.
х+20у=-19;
у=8:(-8);
х+20у=-19;
у=-1;
Подставляем значение переменной у в первое уравнение.
х+20*(-1)=-19;
х-20=-19;
х=-19+20;
х=1;
ответ: (1;-1).
Объяснение: