ответ: а) нет
б) да
в) нет
Объяснение:
Так как график функции y=a/x проходит через точку А(-3;3), то её координаты подставим в уравнение функции:
А(-3;3), х=-3,у = 3.
3 = а · ( -3 )
а = 3 : ( -3 )
а = - 1
Значит, функция задана уравнением у = - х.
Проверим, принадлежат ли точки B, C, D графику этой функции. Подсавив координаты проверим истинность равенств.
а) B(-1;9), х = -1, у = 9
9 = - ( - 1)
9 ≠ 1, значит B(-1;9) не принадлежит графику.
б) C(3;-3), х = 3, у = -3
- 3 = - 3, верно, значит C(3;-3) принадлежит графику.
в) D(1;-9), х = 1, у = -9
-9 ≠ - 1, значит D(1;-9) не принадлежит графику.
Уравнение x^3 + x^2 + x + 2 = 0 имеет один иррациональный корень.
f(-2) = -8 + 4 - 2 + 2 = -4 < 0
f(-1) = -1 + 1 - 1 + 2 = 1 > 0
x0 ∈ (-2; -1)
Можно найти примерно
f(-1,4) = -2,744 + 1,96 - 1,4 + 2 = -0,184 < 0
f(-1,3) = -2,197 + 1,69 - 1,3 + 2 = 0,193 > 0
x0 ∈ (-1,4; -1,3)
Можно уточнить
f(-1,35) = 0,012125 > 0
f(-1,36) = -0,025856 < 0
x0 ∈ (-1,36; -1,35)
f(-1,353) ~ 0,0008
Точность достаточна.
Остальные два корня - комплексные.
Я думаю, что это ошибка в задаче, должно было быть
x^3 + x^2 + x + 1 = (x + 1)(x^2 + 1)
б) 4x - 4y + xy - y^2 = 4(x - y) + y(x - y) = (4 + y)(x - y)
ответ: а) нет
б) да
в) нет
Объяснение:
Так как график функции y=a/x проходит через точку А(-3;3), то её координаты подставим в уравнение функции:
А(-3;3), х=-3,у = 3.
3 = а · ( -3 )
а = 3 : ( -3 )
а = - 1
Значит, функция задана уравнением у = - х.
Проверим, принадлежат ли точки B, C, D графику этой функции. Подсавив координаты проверим истинность равенств.
а) B(-1;9), х = -1, у = 9
9 = - ( - 1)
9 ≠ 1, значит B(-1;9) не принадлежит графику.
б) C(3;-3), х = 3, у = -3
- 3 = - 3, верно, значит C(3;-3) принадлежит графику.
в) D(1;-9), х = 1, у = -9
-9 ≠ - 1, значит D(1;-9) не принадлежит графику.