Рассмотрим остатки от деления чисел 21, 13 и 5 на 8. Они все равны 5. При возведении чисел 21, 13 и 5 в степень будем всегда иметь множители вида (6k+5)*...*(6k+5). Поскольку 5^2 = 25, а 25/8 дает в остатке 1, то числа 21^n, 13^n и 5^n при четных n будут давать остатки равные 1, а при нечетных n, остатки равные 5. Пусть сперва n четно, тогда 21^n = 8k+1, 9*13^n = 9*(8m + 1) = 72m + 9 и 2*5^(n+1) = 2*(8l + 5) = 16l + 10. Тогда 21^n + 9*^3^n - 2*5^(n+1) = 8k + 72m - 16l + 1 + 9 - 10 = 8(k + 9m - 2l), т. е. кратно 8. Пусть теперь n нечетно. Тогда 21^n = 8k + 5, 9*13^n = 9*(8m + 5) = 72m + 45 и 2*5^(n+1) = 2*(8l + 1) = 16l + 2. Следовательно 21^n + 9*^3^n - 2*5^(n+1) = 8k + 72m - 16l + 5 + 45 - 2 = 8(k + 9m - 2l) + 48 = 8(k + 9m - 2l +6), т. е. вновь кратно 8. Т. о. выражение 21^n + 9*^3^n - 2*5^(n+1) всегда кратно 8.
чтобы узнать ,принадлежит ли точка графику функции,надо в данную функцию подставить значения х и у.если получим верное равенство-тогда точка принадлежит графику функции,а если равенство будет неверным,значит точка не принадлежит графику.
A(2;3)
Х=3
У=2
Подставим вместо у и х эти цифры
2=3²-5×3+4
Будет -2 т.к. -2 нету в точке А то она не подходит.❌
В(1;4)
4=1²-5×1+4
Пример равен 0, не принадлежит графику.❌
С(0;4)
4=0-5×0+4
Пример равен 4,т.к. пример совпадает с точками С то он относится к графику.✔
C(0;4)
чтобы узнать ,принадлежит ли точка графику функции,надо в данную функцию подставить значения х и у.если получим верное равенство-тогда точка принадлежит графику функции,а если равенство будет неверным,значит точка не принадлежит графику.
A(2;3)
Х=3
У=2
Подставим вместо у и х эти цифры
2=3²-5×3+4
Будет -2 т.к. -2 нету в точке А то она не подходит.❌
В(1;4)
4=1²-5×1+4
Пример равен 0, не принадлежит графику.❌
С(0;4)
4=0-5×0+4
Пример равен 4,т.к. пример совпадает с точками С то он относится к графику.✔
D(5;12)
12=4²-5×4+4
Поимер равен 0, не принадлежит графику.❌
Е(-2;16)
16=-2²-5×(-2)+4
Пример равен 10, не принадлежит графику.❌
F(1;-12)
-12=1²-5×1+4
Пример равен 0, не принадлежит графику.❌
Объяснение: