Для простоты решения обозначим ВД=х, АД=у, ДС=z . Тогда АВ=2х . Высота прямоуг. треуг., опущенная из прямого угла есть среднее пропорциональное между проекциями катетов на гипотенузу, то есть ВД ² = АД*ДС ---> x²=yz Из ΔАВД: у²=(2х)²-х²=3х² ---> y=x√3 Катет есть среднее пропорциональное между его проекцией на гипотенузу и самой гипотенузой , то есть АВ ²=АС*АД ---> (2x)²=(y+z)y=(x√3+z)x√3=3x²+xz√3 4x²-3x²=xz√3 ---> x²=xz√3 ---> z=x²:(x√3)=x:√3
давайте покажу два примера:
для решения задания нам для начала нужно знать теорему Виета
она выглядит вот так:
если наше квадратное уравнение выглядит так x² + px + q = 0, то
x1 + x2 = -p
x1 · x2 = q
судя по первому примеру -1+3=2
-1*3=-3
тогда наше уравнение будет выглядеть так х^2+2x-3=0
следущий пример точно также: -0,2+(-0,3)=-0,5
-0,2*(-0,3)=0,06
а уравнение-x^2-0.5x+0.06=0
Желаю удачи!
Тогда АВ=2х .
Высота прямоуг. треуг., опущенная из прямого угла есть среднее пропорциональное между проекциями катетов на гипотенузу, то есть
ВД ² = АД*ДС ---> x²=yz
Из ΔАВД: у²=(2х)²-х²=3х² ---> y=x√3
Катет есть среднее пропорциональное между его проекцией на гипотенузу и самой гипотенузой , то есть
АВ ²=АС*АД ---> (2x)²=(y+z)y=(x√3+z)x√3=3x²+xz√3
4x²-3x²=xz√3 ---> x²=xz√3 ---> z=x²:(x√3)=x:√3
3*AC=3(y+z)=3(x√3+x/√3)=3*(3x+x)/(√3)=4x*√3
4*AD=4y=4*x√3 --->
3*AC=4*AD