В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
23Олеся1
23Олеся1
18.04.2023 17:21 •  Алгебра

Y=(2/x+3)log3(cosx)
y=ln(lnx)
y=sin^3(3-x)

Показать ответ
Ответ:
ева514
ева514
18.12.2021 11:05
Для определения числовых промежутков, на которых функция y=f(x) имеет положительный знак, нам необходимо анализировать график первообразной функции y=F(x) и определить, на каких интервалах она находится выше оси x.

Дано, что точка A соответствует x=1 и y=-6, а точка B соответствует x=2 и y=-3. Эти значения представляют значения функции F(x) на интервале (1;2).

Точка C соответствует x=3 и y=-1, а точка D соответствует x=4 и y=3. Эти значения представляют значения функции F(x) на интервале (3;4).

Точка E соответствует x=5 и y=6, а точка F соответствует x=6 и y=8. Эти значения представляют значения функции F(x) на интервале (5;6).

Исходя из данной информации, мы можем сделать следующие выводы:

1. На интервале (1;2) значения функции F(x) находятся ниже оси x. Это значит, что на данном интервале функция y=f(x) будет иметь отрицательный знак.

2. На интервале (3;4) значения функции F(x) находятся выше оси x. Это значит, что на данном интервале функция y=f(x) будет иметь положительный знак.

3. На интервале (5;6) значения функции F(x) также находятся выше оси x. Это значит, что и на данном интервале функция y=f(x) будет иметь положительный знак.

Итак, на основании проведенного анализа графика первообразной функции y=F(x), можем сделать вывод, что числовые промежутки, на которых функция y=f(x) имеет положительный знак, это: (3;4) и (5;6). Это значит, что значения функции y=f(x) будут положительными на интервалах от 3 до 4 и от 5 до 6.
0,0(0 оценок)
Ответ:
asy23
asy23
01.06.2020 08:13
Для решения данной задачи, нам требуется определить значение скорости распространения сигнала в жидкости, при которой частота сигнала второго батискафа будет не менее 130 Гц.

Дано:
f0 = 125 Гц - частота сигнала, издаваемого первым батискафом
f = f0c + uc - v - частота улавливаемого сигнала вторым батискафом
u = 12 м/с - скорость второго батискафа относительно жидкости
v = 17 м/с - скорость первого батискафа относительно жидкости

Мы должны найти максимальную скорость c распространения сигнала в жидкости.

Перепишем формулу для частоты сигнала второго батискафа, подставляя известные значения:

f = f0c + uc - v
130 = 125c + 12c - 17

Теперь решим полученное уравнение относительно c:

130 = 137c - 17
147 = 137c
c ≈ 147 / 137 ≈ 1.074 м/с

Итак, максимальная скорость распространения сигнала в жидкости, чтобы частота сигнала второго батискафа была не менее 130 Гц, составляет приблизительно 1.074 м/с.
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота