1)Степень некоторого числа с отрицательным (целым) показателем определяется как единица, делённая на степень того же числа с показателем, равным абсолютной величине отрицательного показателя: а – n = ( 1 / an )
2)Степень любого ненулевого числа с нулевым показателем равна 1:
a^0 = 1
Например: 2^0 = 1, (-5)^0 = 1, (3 / 5)^0 = 1
3)При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.
am · an = am + n ,
где «a» — любое число, а «m», «n» — любые натуральные числа.
1. ДАНО Y = x² - 6*x + 5 - уравнение параболы. НАЙТИ Ymin = ? - наименьшее значение. РЕШЕНИЕ Чтобы найти координаты вершины параболы преобразуем уравнение к виду Y=(x - a)² +b Y = (x² - 2*3x + 9) - 9 + 5 = (x-3)² - 4. Вершина параболы: А(3;-4) Ay = - 4 - наименьшее значение - ОТВЕТ Точки пересечения с осями координат можно получить решением квадратного уравнения. D = 16, x1 = 1, x2 = 5 Рисунок к задаче в приложении. 2. График параболы на рис. 2. Корни - х1 = - 1б х2 = 3, вершина А(1;4). Но для решения задачи график не обязателен. Достаточно подставить значение У=3 и решить квадратное уравнение. 3 = - x² + 2*x + 3 - x² + 2*x = - x*(x-2) = 0 ОТВЕТ: х1 = 0, х2 = 2 Рисунок в приложении. 3. Каноническое уравнение параболы: Y= (x-a)² + b. Координаты вершины такой параболы: Ах = - а, Ау = b. Y = (x-3)² - уравнение параболы - дано. Вершина с координатами: А(3;0), и ветви параболы - вверх.∫ Рисунок в приложении.
1)Степень некоторого числа с отрицательным (целым) показателем определяется как единица, делённая на степень того же числа с показателем, равным абсолютной величине отрицательного показателя: а – n = ( 1 / an )
2)Степень любого ненулевого числа с нулевым показателем равна 1:
a^0 = 1
Например: 2^0 = 1, (-5)^0 = 1, (3 / 5)^0 = 1
3)При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.
am · an = am + n ,
где «a» — любое число, а «m», «n» — любые натуральные числа.
Пример:
b · b2 · b3 · b4 · b5 = b 1 + 2 + 3 + 4 + 5 = b15
ДАНО
Y = x² - 6*x + 5 - уравнение параболы.
НАЙТИ
Ymin = ? - наименьшее значение.
РЕШЕНИЕ
Чтобы найти координаты вершины параболы преобразуем уравнение к виду
Y=(x - a)² +b
Y = (x² - 2*3x + 9) - 9 + 5 = (x-3)² - 4.
Вершина параболы: А(3;-4)
Ay = - 4 - наименьшее значение - ОТВЕТ
Точки пересечения с осями координат можно получить решением квадратного уравнения.
D = 16, x1 = 1, x2 = 5
Рисунок к задаче в приложении.
2. График параболы на рис. 2. Корни - х1 = - 1б х2 = 3, вершина А(1;4).
Но для решения задачи график не обязателен. Достаточно подставить значение У=3 и решить квадратное уравнение.
3 = - x² + 2*x + 3
- x² + 2*x = - x*(x-2) = 0
ОТВЕТ: х1 = 0, х2 = 2
Рисунок в приложении.
3. Каноническое уравнение параболы: Y= (x-a)² + b.
Координаты вершины такой параболы: Ах = - а, Ау = b.
Y = (x-3)² - уравнение параболы - дано.
Вершина с координатами: А(3;0), и ветви параболы - вверх.∫
Рисунок в приложении.