11п/9 = п+(2п/9), п<11п/9, 11п/9 < (3п/2), <=> 11/9<3/2 <=> 11*2 < 3*9 <=> 22< 27, истина. т.о. 11п/9 принадлежит третьей четверти, в которой синус отрицателен, т.е. sin(11п/9) < 0. 3,14<п<3,15. 3,14*(3/2)<(3п/2)<3,15*(3/2)=4,725<5, 5<6,28=2*3,14<2п<2*3,15. (3п/2)<5<2п. Угол в 5 (радиан) принадлежит четвертой четверти, в которой косинус положителен, поэтому cos(5)>0. (3п/2)=1,5п<1,6п<2п. Угол 1,6п принадлежит четвертой четверти, в которой tg отрицателен, т.е. tg(1,6п) <0. ответ. в).
1. Во втором мешке было х кг муки, а в первом 2х кг муки.
1,5(2х-30)=x+5
3x-45-x=5
2x=50
x=25 кг
Значит во втором мешке было 25 кг муки, тогда в первом мешке было 2*25=50 кг.
2. Обозначим количество проданного картофеля во второй день за х т, тогда в первый день продали (х-1)т, а в третий: x-1+x-1=2x-2
x+x-1+2x-2=15
4х-3=15
4х=18
х=4,5 т
Значит во второй день продали 4,5 т, тогда в первый день продали 4,5-1=3,5т, а в третий 2*4,5-2=9-2=7т.
ответ: 4,5; 3,5; 7 т
3.Обозначим количество деталей в час ученика за х, тогда количество деталей в час мастера х+6.
8x=5(x+6)
8x=5x+30
8x-5x=30
3x=30
x=10
Значит ученик изготавливал 10 деталей в час.
ответ: 10
п<11п/9,
11п/9 < (3п/2), <=> 11/9<3/2 <=> 11*2 < 3*9 <=> 22< 27, истина.
т.о. 11п/9 принадлежит третьей четверти, в которой синус отрицателен, т.е. sin(11п/9) < 0.
3,14<п<3,15.
3,14*(3/2)<(3п/2)<3,15*(3/2)=4,725<5,
5<6,28=2*3,14<2п<2*3,15.
(3п/2)<5<2п.
Угол в 5 (радиан) принадлежит четвертой четверти, в которой косинус положителен, поэтому cos(5)>0.
(3п/2)=1,5п<1,6п<2п.
Угол 1,6п принадлежит четвертой четверти, в которой tg отрицателен, т.е. tg(1,6п) <0.
ответ. в).