В решении.
Объяснение: По строкам:
| 2⁴ | 2 | 2⁴ | 2⁹
| 2³ | 2³ | 2³ | 2⁹
| 2² | 2⁵ | 2² | 2⁹
| 2⁹ | 2⁹ | 2⁹ (по столбцам)
1 диагональ - 2⁹;
2 диагональ - 2⁹.
Запись в тетради: 2*2*2*2 = 2⁴;
2*2*2 = 2³;
2*2 = 2²;
2*2*2*2*2 = 2⁵;
Первая строка: 2⁴*2*2⁴ = 2⁹;
Вторая строка: 2³*2³*2³ = 2⁹;
Третья строка: 2²*2⁵*2² = 2⁹;
Первый столбец: 2⁴*2³*2² = 2⁹;
Второй столбец: 2*2³*2⁵ = 2⁹;
Третий столбец: 2⁴*2³*2² = 2⁹.
Первая диагональ: 2⁴*2³*2² = 2⁹;
Вторая диагональ: 2⁴*2³*2² = 2⁹.
Вывод: в магическом квадрате сумма чисел в каждой строке, каждом столбце и на обеих диагоналях одинаковая.
1) -х³ + 3х² + х +1
3) 3х³ +10х² +4х —2
Объяснение:
Многочленом стандартного вида называют многочлен, у которого каждый входящий в него член имеет одночлен стандартного вида и не содержит подобных членов.
1) (х-1)² - х(х+1)(х-3) =
=х² + 1² —2*х*1 - х*(х*х + 1*х +х*(-3) +1*(-3)) =
=х² +1 — 2х - х*(х² + х — 3х —3) =
=х² +1 — 2х - х*(х² — 2х —3) =
=х² +1 — 2х - х*х² - х*(-2х) +х*3 =
=х² +1 — 2х - х³ +2х² +3х=
=-х³ + 3х² + х +1
3) (х-2)² + 3(х+1)³ - (х+9) =
= х² + 2² —2*2*х +
+ 3*(х³ +3*х²*1 +3*х*1² +1³) -
- 1*х —1*9=
= х² +4 —4х +3(х³ +3х² +3х +1) —х —9 =
= х² —5 —5х +3(х³ +3х² +3х +1) =
= х² —5 —5х +3*х³ +3*3х² +3*3х +3*1 =
= х² —5 —5х +3х³ +9х² +9х +3 =
= 3х³ +10х² +4х —2
В решении.
Объяснение: По строкам:
| 2⁴ | 2 | 2⁴ | 2⁹
| 2³ | 2³ | 2³ | 2⁹
| 2² | 2⁵ | 2² | 2⁹
| 2⁹ | 2⁹ | 2⁹ (по столбцам)
1 диагональ - 2⁹;
2 диагональ - 2⁹.
Запись в тетради: 2*2*2*2 = 2⁴;
2*2*2 = 2³;
2*2 = 2²;
2*2*2*2*2 = 2⁵;
Первая строка: 2⁴*2*2⁴ = 2⁹;
Вторая строка: 2³*2³*2³ = 2⁹;
Третья строка: 2²*2⁵*2² = 2⁹;
Первый столбец: 2⁴*2³*2² = 2⁹;
Второй столбец: 2*2³*2⁵ = 2⁹;
Третий столбец: 2⁴*2³*2² = 2⁹.
Первая диагональ: 2⁴*2³*2² = 2⁹;
Вторая диагональ: 2⁴*2³*2² = 2⁹.
Вывод: в магическом квадрате сумма чисел в каждой строке, каждом столбце и на обеих диагоналях одинаковая.
1) -х³ + 3х² + х +1
3) 3х³ +10х² +4х —2
Объяснение:
Многочленом стандартного вида называют многочлен, у которого каждый входящий в него член имеет одночлен стандартного вида и не содержит подобных членов.
1) (х-1)² - х(х+1)(х-3) =
=х² + 1² —2*х*1 - х*(х*х + 1*х +х*(-3) +1*(-3)) =
=х² +1 — 2х - х*(х² + х — 3х —3) =
=х² +1 — 2х - х*(х² — 2х —3) =
=х² +1 — 2х - х*х² - х*(-2х) +х*3 =
=х² +1 — 2х - х³ +2х² +3х=
=-х³ + 3х² + х +1
3) (х-2)² + 3(х+1)³ - (х+9) =
= х² + 2² —2*2*х +
+ 3*(х³ +3*х²*1 +3*х*1² +1³) -
- 1*х —1*9=
= х² +4 —4х +3(х³ +3х² +3х +1) —х —9 =
= х² —5 —5х +3(х³ +3х² +3х +1) =
= х² —5 —5х +3*х³ +3*3х² +3*3х +3*1 =
= х² —5 —5х +3х³ +9х² +9х +3 =
= 3х³ +10х² +4х —2