В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
frogRICH
frogRICH
29.04.2021 19:16 •  Алгебра

Y=f(x) y=2/3x⁴+|4| f(x)=|x|-2x²
f(x)=x²-16/0,5sin2x
f(x)=x(x-3)/cos3x

Показать ответ
Ответ:
SemenOr
SemenOr
03.01.2022 02:07
Пусть P(А,В) = вероятность ровно А решек из В монет
если решка имеет вероятность p, а нерешка (1-p)
P(А,В) = p^A * (1-p)^(B-A)*С(A,B) - биномиальное распределение
где С(A,B) = B! / (A!*(B-A)!) - число сочетаний из В по А
в нашем случае p=1/2; 1-p=1/2
P(А,В) = p^A * (1-p)^(B-A)*С(A,B)=1/2^A*(1-1/2)^(B-A)*B!/(A!*(B-A)!) = 1/2^B * B! / (A!*(B-A)!)

искомая вероятность P = P(Y,X)+ P(Y+1,X)++ P(X,X)
например при Х=6 У=2
P = P(2,6)+P(3,6)+P(4,6)+P(5,6)+P(6,6)
или
P = 1-P(0,6)-P(1,6)
так как во второй записи меньше слагаемых
P(0,6)=1/2^6 * 6! / (0!*(6-0)!) =1/2^6
P(1,6)=1/2^6 * 6! / (1!*(6-1)!) =1/2^6*6
P = 1-P(0,6)-P(1,6)= 1-1/2^6-1/2^6*6 - это ответ

не сложно рассчитать и
P(2,6),P(3,6),P(4,6),P(5,6),P(6,6)
например P(3,6)=(1/2)^6*(6*5*4)/(1*2*3)=(1/2)^6 * 20
0,0(0 оценок)
Ответ:
лера1231231
лера1231231
07.03.2020 01:18
сколько корней имеет уравнение (cos2x-cosx)/sinx=0 на промежутке 
[-2π;2π ]  ?

ОДЗ: sinx ≠ 0 .
x ≠ π*n , n ∈ Z . 
---
cos2x - cosx = 0  ;
2cos²x -cosx -1 =0 ; замена :   t = cosx
2t² - t  -1 =0 ;   D =1² -4*2( -1) = 1+8 =9 =3²
t₁ =(1+3)/4 =1 ⇒ cosx =1 ⇔ sinx = 0  не удовлетворяет  ОДЗ .
t₂ =(1-3)/4 = -1/2 ⇒ cosx = -1/2 .
x = ± 2π/3 +2π*k , k∈ Z . 

x₁ = 2π/3 +2π*k , k∈ Z . Из них два решения  на промежутке  [-2π;2π ] : - 4π/3  (если  k = -1 )  и  2π/3 (если  k =0 ) .
* * * - 2π ≤ 2π/3 +2π*k  ≤ 2π ⇔ -1 ≤ 1/3 +k  ≤ 1 ⇔ -1 - 1/3 ≤ k  ≤ 1 -1/3 ⇒
k = -1 ; 0  * * *
x₂ = -2π/3 +2π*k , k∈ Z .Из них два решения  на промежутке  [-2π;2π ] : 
 - 2π/3  (если  k = 0 )  и   4π/3 (если  k =1 ) .
* * * - 2π ≤  -2π/3 +2π*k  ≤ 2π ⇔ -1 ≤ -1/3 +k  ≤ 1 ⇔ -1 + 1/3 ≤ k  ≤ 1 +1/3 ⇒
k =  0 ; 1  * * *
ответ : 4 корней на промежутке  [-2π;2π ] .
* * * * * * * 
Другой решения :
(cos2x-cosx) / sinx = 0 ⇔(системе)  {cos2x - cosx = 0 ;  sinx ≠ 0 .  
* * * требование  sinx ≠ 0 определяет ОДЗ уравнения * * *
* * * cosα - cosβ = - 2sin(α - β)/2*sin(α + β)/2  * * *
cos2x - cosx = 0 ;
-2sin(x/2)*sin(3x/2) =0.    
a) x/2 =π*k , k ∈ Z ; 
x =2π*k , k ∈ Z .
b) 3x/2 =π*m , m ∈ Z 
---
x =2π*m/3  , m ∈ Z
Серия  решений  x =2π*k   входит  в   x =2π*m/3  , если m =3k  ∈ Z , т.е.
общее решение уравнения  cos2x - cosx= 0  является                                x =2π*m/3, m ∈ Z .
Из  них нужно исключить m=3n  
x₁ =2π*(3n+1)/3 =2π/3 +2π*n  ,  n ∈ Z .
x₂ =2π*(3n -1)/3 = -2π/3 +2π*n  ,  n ∈ Z .
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота