Признак делимости на 11: сумма цифр числа, стоящих на четных местах, равна сумме цифр, стоящих на нечетных местах, либо отличается от неё на 11.
Сумма всех 10-и цифр: 1+2+3+4+5+6+7+8+9+0=45, 45/2=22(ост.1), поэтому, поскольку в искомом числе должно быть равное количество четных и не четных мест, суммацифр на четных местах не может быть равна сумме цифр на нечетных.
Тогда нужно проверить 2-ю часть признака делимости:
45-11=34
34/2=17
45-17=28
28-17=11, значит сумма чисел, стоящтх на нечетных местах( 1; 3; 5; 7; 9) должна быть = 17, а на четных местах (2; 4; 6; 8; 10) = 28.
Теперь нужно разложить 17 и 28, каждое, на 5 слагаемых:
17=1+2+3+4+7
28=5+6+8+9+0
ответ: Данное разложение возможно, значит такое число существует.
Искомое число: 1526384970.
В задании сказано, составить число, поэтому найдено 1 число, на самом деле, таких чисел 5!+5!=2*5!=2(5*4*3*2*1)=240, потому, что при перестановке мест слагаемых сумма не меняется, поэтому сумма чисел, стоящих на нечетных местах, может быть в 120 вариантах 5*4*3*2*1=120, и сумма чисел, стоящих на четных местах может быть тоже в 120 вариантах (включая 0, потому, что 0 стоит на четном месте, поэтому никогда не встанет на 1 место, что могло бы изменить число с 10-и значного на 9-и значное)
Дано: 10 различных цифр: 1 2 3 4 5 6 7 8 9 0
Составить число кратное 11.
Признак делимости на 11: сумма цифр числа, стоящих на четных местах, равна сумме цифр, стоящих на нечетных местах, либо отличается от неё на 11.
Сумма всех 10-и цифр: 1+2+3+4+5+6+7+8+9+0=45, 45/2=22(ост.1), поэтому, поскольку в искомом числе должно быть равное количество четных и не четных мест, суммацифр на четных местах не может быть равна сумме цифр на нечетных.
Тогда нужно проверить 2-ю часть признака делимости:
45-11=34
34/2=17
45-17=28
28-17=11, значит сумма чисел, стоящтх на нечетных местах( 1; 3; 5; 7; 9) должна быть = 17, а на четных местах (2; 4; 6; 8; 10) = 28.
Теперь нужно разложить 17 и 28, каждое, на 5 слагаемых:
17=1+2+3+4+7
28=5+6+8+9+0
ответ: Данное разложение возможно, значит такое число существует.
Искомое число: 1526384970.
В задании сказано, составить число, поэтому найдено 1 число, на самом деле, таких чисел 5!+5!=2*5!=2(5*4*3*2*1)=240, потому, что при перестановке мест слагаемых сумма не меняется, поэтому сумма чисел, стоящих на нечетных местах, может быть в 120 вариантах 5*4*3*2*1=120, и сумма чисел, стоящих на четных местах может быть тоже в 120 вариантах (включая 0, потому, что 0 стоит на четном месте, поэтому никогда не встанет на 1 место, что могло бы изменить число с 10-и значного на 9-и значное)
Проверка с калькулятора:
1526384970/11=38762270
Объяснение:
16. 4/11 ÷(-16/33)+5 3/4=4/11 ·(-33/16)+5 3/4=-3/4 +5 3/4=5
17. (4 3/8 -11/5) ÷3/10=(4 15/40 -2 8/40)·10/3=2 7/40 ·10/3=87/40 ·10/3=29/4=7 1/4=7,25
18. (11/12 +11/20)·15/8=(55/60 +33/60)·15/8=88/60 ·15/8=11/4=2 3/4=2,75
19. (3,1+3,4)·3,8=6,5·3,8=13/2 ·19/5=247/10=24,7
20. 2,7/(1,4+0,1)=27/15=9/5=1,8
21. 8,5·2,6-1,7=17/2 ·13/5 -1,7=221/10 -1,7=22,1-1,7=20,4
22. 9,4/(4,1+5,3)=94/94=1
23. 3,8/(2,6+1,2)=38/38=1
24. 18/4 ·14/3 ÷4/5=9/2 ·14/3 ·5/4=3·7·5/4=(21·5)/4=105/4=26 1/4=26,25
25. (432²-568²)÷1000=((432-568)(432+568))/1000=(-136+1000)/1000=864/1000=0,864