при а>0 ветви параболы идут вверх при а<0 ветви параболы идут вниз прежде всего найдем нули функции, то есть те х, при которых у=0
обращается в ноль для этого решаем уравнение ах²+bx+c=0 для начала находим дискриминант D=b²-4ac если D>0, у нас будут два пересечения с осью ОХ в точках х¹ и х² которые являются корнями квадратичной функции.
х¹'²=(-b±✓D)/2a
если D=0, то такая точка будет одна, причём ось ОХ будет касательной к параболе в этой точке.
если D<0, и а>0 то парабола будет над осью ОХ и все у>0 если D>0 и а<0, то парабола будет под осью ОХ и все у<0
теперь найдем те точки, при которых парабола пересекает ось ОУ
для этого подставляем х=0 в y(x)=ах²+bx+c, нетрудно увидеть, что при х=0, у=с
далее найдем производную у'
y'(x)=(ах²+bx+c)'=2аx+b y'(x*)=0 => x*= -b/(2a)
это координата вершины параболы затем посчитаем y*=y(x*), подставив х* в наше уравнение параболы у(х*)=а(х*)²+bx*+с
Так что основными точками , которые Вам надо найти будут точки пересечения параболы с осями ОХ, ОУ и вершина параболы. остальные точки - на Ваше усмотрение...
при а>0 ветви параболы идут вверх
при а<0 ветви параболы идут вниз
прежде всего найдем нули функции, то есть те х, при которых у=0
обращается в ноль
для этого решаем уравнение
ах²+bx+c=0
для начала
находим дискриминант
D=b²-4ac
если D>0, у нас будут два пересечения с осью ОХ в точках х¹ и х²
которые являются корнями квадратичной функции.
х¹'²=(-b±✓D)/2a
если D=0, то такая точка будет одна, причём ось ОХ будет касательной к параболе в этой точке.
если D<0, и а>0 то парабола будет над осью ОХ и все у>0
если D>0 и а<0, то парабола будет под осью ОХ и все у<0
теперь найдем те точки, при которых парабола пересекает ось ОУ
для этого подставляем х=0 в
y(x)=ах²+bx+c, нетрудно увидеть, что
при х=0, у=с
далее найдем производную у'
y'(x)=(ах²+bx+c)'=2аx+b
y'(x*)=0 => x*= -b/(2a)
это координата вершины параболы
затем посчитаем y*=y(x*),
подставив х* в наше уравнение параболы
у(х*)=а(х*)²+bx*+с
Так что основными точками , которые Вам надо найти будут точки пересечения параболы с осями ОХ, ОУ и вершина параболы. остальные точки - на Ваше усмотрение...
1) a) (2a^2-3a+1)-(7a^2-5a)=
2a^2-3a+1-7a^2+5a=
-5a^2+2a+1=
-6a^2+(a+1)^2
b) 3x(4x^2-x)=
12x^3-3x^2=
3x^2(4x-1)
2) a) 2xy-xy^2=xy(2-y)
b) 8b^4+2b^3=2b^3(4b+1)
3) 7-4(3x-1)=5(1-2x)
7-12x+4=5-10x
-12x+10x=5-7-4
-2x=-6
x=3
4) Дано:
6Б=х учеников
6А=х-2 учеников
6В=х+3 ученика
Всего в 3-х классах = 91 ученик
Найти, сколько учеников в каждом классе
х+х-2+х+3=91
3х+1=91
3х=90
х=30 ученика
х-2=28 учеников
х+3=33 ученика
ответ: 6А - 28 учеников: 6Б - 30 уч еников; 6В - 33 ученика
5) (x-1)/5=(5-x)/2+(3x)/4
4(х-1)/20=10(5-х)/20+5(3х)/20
4х-4=50-10х+15х
4х+10х-15х=50+4
-х=54
х=-54
6) 3x(x+y+c)-3y(x-y-c)-3c(x+y-c)=
3x^2+3xy+3xc-3xy+3y^2+3yc-3xc-3yc+3c^2=
3x^2+3y^2+3c^2=
3(x^2+y^2+c^2)