В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
1232812
1232812
02.10.2020 09:52 •  Алгебра

Y=(x-3)^2-4 (функция), что нужно указать: 1)область визначення
2)множину значення
3)нулі та проміжки знакосталості
4) проміжки монотонності
5) найбільше та найменше значення

Показать ответ
Ответ:
Еннтпшдь
Еннтпшдь
14.07.2022 16:20
Скрорость теплохода примем за x(км/час), а скорость течения  - за y(км/час). Тогда скорость теплохода по течению будет (x+y)(км/час), а скорость теплохода против течения (x-y)(км/час). Расстояние равняется произведению скорости на время, следовательно, можем составить систему уравнений:
\left \{ {{3(x+y) + 4(x-y) = 380} \atop {(x+y)+ \frac{1}{2}(x-y)=85 }} \right.
В первом уравнении раскрываем скобки, второе же уравнение умножаем на 2:
\left \{ {{3x+3y+4x-4y = 380} \atop {2x+2y+x-y = 85}} \right.
\left \{ {{7x-y=380} \atop {3x+y=170}} \right.
Из второго уравнения выражаем y и подставляем в первое:
\left \{ {{7x-170+3x=380} \atop {y=170-3x}} \right.
Далее, решаем первое уравнение относительно x:
10x = 550
x=55
y=170-3*55=5
Таким образом, собственная скорость теплохода равняется 55 км/час, а скорость течения - 5 км/час. Можно сделать проверку, подставив найденные скорости в изначальные уравнения.
0,0(0 оценок)
Ответ:
упоротаялялька
упоротаялялька
23.03.2023 08:27

чтобы наи­боль­шее зна­че­ние дан­ной функ­ции было не мень­ше 1, не­об­хо­ди­мо и до­ста­точ­но, чтобы она в какой-то точке при­ня­ла зна­че­ние 1.

если наи­боль­шее зна­че­ние функции не мень­ше еди­ни­цы, то по не­пре­рыв­но­сти в какой-то точке будет зна­че­ние еди­ни­ца. если же наи­боль­шее зна­че­ние мень­ше еди­ни­цы, то зна­че­ние еди­ни­ца при­ни­мать­ся не может. значит нужно найти при каких значениях a есть корни у уравнения |x - a| = x² + 1

так как x² + 1 > 0 , то уравнение равносильно совокупности :

\left[ { {{x-a=x^{2}+1 } \atop {a-x=x^{2}+1 }} { {{x^{2}-x+1+a=0 } \atop {x^{2}+x+1-a=0 }} \right.

эта совокупность имеет решение, если:

\left \{ {{1-4(1+a)\geq0 } \atop {1-4(1-a)\geq0 }}  \{ {{1-4-4a\geq 0 } \atop {1-4+4a\geq 0 }}  \{ {{-4a\geq3 } \atop {4a\geq 3 }}  \{ {{a\leq -\frac{3}{4} } \atop {a\geq \frac{3}{4} }} \right. : (-\infty; -\frac{3}{4}]u[\frac{3}{4}; +\infty)

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота