Рассмотрим треугольник ABC, Высота проведённая из вершины С делит треугольник ABC на два равных треугольник (по трём углоам)
Рассмотрим трегольник НСА - прямоугольный (т.к СН высота), по определению cos это отношение прилежащего катета к гипотенузе, но нам известен противолежащий катет следовательно нам нужно найти синус по основному тригонаметрическому ождеству 1-(sqrt10/10)^2=1-10/100=90/100 => sin=3/sqrt10
сos(4arctgx)=1/2
4arctgx=±arccos(1/2)+2πn, n∈Z;
4arctgx=±π/3+2πn, n∈Z;
arctgx=±π/12+πn/2, n∈Z;
x=tg(±π/12+πn/2), n∈Z;
cos((±π/12+πn/2))≠0
Поскольку арктангенс - это угол из (-π/2;π/2), при n =0 получим два ответа х=tg(±π/12).
tg(π/12)=(tg(π/4-π/6))=(1 -√3/3)/ (1+√3/3)=
(3-√3)/(3+√3) = (3-√3)²/(3²-(√3)² ) =(12-2√3)/(9-3)=2-√3/3
tg(-π/12)=-tg(π/12)=-(2-√3/3)=-2+√3/3
При n=1 х=tg(±π/12+π/2), указанному промежутку удовлетворяет tg(5π/12)=(tg(π/4+π/6))=(1 +√3/3)/ (1-√3/3)=
(3+√3)/(3-√3) = (3+√3)²/(3²-(√3)² ) =(12+2√3)/(9-3)=2+√3/3
При n=-1 х=tg(±π/12-π/2), указанному промежутку удовлетворяет tg(-5π/12)=-tg5π/12=-(2+√3/3 )=-2-√3/3
При n=2 х=tg(±π/12+π); и при n=-2 х=tg(±π/12-π), Корней нет. Остальные можно не проверять, они не войдут в промежуток
(-π/2;π/2).
ответ. х=±(2-√3/3); х=±(2+√3/3 )
Рассмотрим треугольник ABC, Высота проведённая из вершины С делит треугольник ABC на два равных треугольник (по трём углоам)
Рассмотрим трегольник НСА - прямоугольный (т.к СН высота), по определению cos это отношение прилежащего катета к гипотенузе, но нам известен противолежащий катет следовательно нам нужно найти синус по основному тригонаметрическому ождеству 1-(sqrt10/10)^2=1-10/100=90/100 => sin=3/sqrt10
6/AC=3/sqrt10
3AC=6sqrt10 |:3
AC=2sqrt10
По теореме Пифагора
AH^2=(2sqrt10)^2-6^2=40-36=4
AH=2
Т.к HBC=HBA, то HB=AH=2
AB=HB+AH=2+2=4
ответ: АВ=4