Эту задачу можно "расколоть" с уравнения. Составить его можно так. Пусть 1й выполнит весь заказ за x дней, тогда 2й за x-3 дней. Если принять весь объём работ за 1, то скорость работы 1-го будет:
а скорость работы 2-го:
Если они будут выполнять заказ совместно так, как указано в условии, то за 7 дней они выполнят часть работы:
Что по условию равно всему объёму работ, т. е. 1. Итак мы получаем уравнение:
Решаем его:
При x=1,5 2й должен выполнить заказ за 1,5-3=-1,5 дня, а так не бывает. Остаётся вариант x=14. Тогда 2й выполнит заказ за 14-3=11 дней.
ответ: 1й может выполнить заказ за 14 дней, 2й за 11 дней
а скорость работы 2-го:
Если они будут выполнять заказ совместно так, как указано в условии, то за 7 дней они выполнят часть работы:
Что по условию равно всему объёму работ, т. е. 1. Итак мы получаем уравнение:
Решаем его:
При x=1,5 2й должен выполнить заказ за 1,5-3=-1,5 дня, а так не бывает.
Остаётся вариант x=14. Тогда 2й выполнит заказ за 14-3=11 дней.
ответ: 1й может выполнить заказ за 14 дней, 2й за 11 дней
ответ
Соотношение параметров квадрата
Приведём формулы периметра Р и площади S квадрата через длину стороны а.
периметр квадрата Р равен учетверённому размеру его стороны а: Р = 4 * а;
площадь квадрата S равна квадрату его стороны а: S = a²;
периметр и площадь квадрата связаны между собой. так как в их формулах общий параметр - сторона квадрата: S = P² / 16.
Для понятного объяснения задачи увеличим по заданию его сторону в 3 раза.Тогда новая сторона квадрата станет а1 = 3 * а.
Вычисление увеличения периметра и площади квадрата
Чтобы узнать, как при этом изменились периметр и площадь квадрата, подставим в формулы Р и S вместо "а" новое значение стороны "а1". Тогда:
Р1 = 4 * а1 = 4 * (3 * а ) = 12 * а;
S1 = а1² = (3 * а)² = 9 * а².
После того, как выразили новый периметр Р1 и площадь S1 через начальное значение стороны "а", можно ответить на вопрос задания:
для вычислений используем написанные выше формулы для площади S и периметра P;
чтобы узнать, во сколько раз увеличится периметр квадр
чтобы узнать, во сколько раз увеличится площадь квадрата, нужно разделить S1 на S.
Согласно выше сказанного, ответим на вопросы задания:
во сколько раз увеличился периметр квадрата, для чего разделим (Р1 : Р) = (12 * а) : (4 * а) = 3 (раза);
во сколько раз увеличится площадь квадрата, для чего разделим (S1 : S) = (9 * а²) : (а²) = 9 (раз).
заметим, что если периметр квадрата увеличился в 3 раза, как и сторона квадрата, то площадь, увеличивается в (3)² = 9 раз.
ответ: периметр увеличится в 3 раза, площадь увеличится в 9 раз.