Ивану Царевичу нужно загадать 15552. Каждый день он будет делить это число на натуральное, превосходящее 1. Лучше всего делить на 2, но 2 дня подряд нельзя использовать одно и то же число, поэтому на второй день он поделит то, что получилось, на 3. На третий день снова на 2 и так далее. Чередование 2 и 3.
Делим:
15552/2=7776 (первый день);
7776/3=2592 (второй день);
2592/2=1296 (третий день);
1296/3=432 (четвёртый день);
432/2=216 (пятый день);
216/3=72 (шестой день);
72/2=36 (седьмой день);
36/3=12 (восьмой день);
12/2=6 (девятый день);
6/3=2 (десятый день);
2/2=1 (одиннадцатый день, в который его съедят).
Итак, загадав 15552, Иван Царевич сможет продержаться ещё 10 дней.
Чтобы получить это число, необходимо понимать, что в конце концов мы придём к 1. Поэтому 15552 мы получим следущий образом:
1•2•3•2•3•2•3•2•3•2•3•2 (6 умножений на 2 и 5 умножений на 3).
Графиком функции у₂ = х²- 4 является парабола, ветви которой направлены вверх; функция у₂ = х²- 4 больше или равна нулю на участках:
x ∈(-∞; -2] ∪ [2;+∞)
3) Объединяем полученные решения, для чего на числовой оси отмечаем точки х₂ = -2; х₃ = -2; х₄ = 2; х₁ = 7 и находим перекрываемые области значений, одновременно удовлетворяющие неравенству х²-5х-14 ≤ 0 и неравенству х² ≥ 4:
Ивану Царевичу нужно загадать 15552. Каждый день он будет делить это число на натуральное, превосходящее 1. Лучше всего делить на 2, но 2 дня подряд нельзя использовать одно и то же число, поэтому на второй день он поделит то, что получилось, на 3. На третий день снова на 2 и так далее. Чередование 2 и 3.
Делим:
15552/2=7776 (первый день);
7776/3=2592 (второй день);
2592/2=1296 (третий день);
1296/3=432 (четвёртый день);
432/2=216 (пятый день);
216/3=72 (шестой день);
72/2=36 (седьмой день);
36/3=12 (восьмой день);
12/2=6 (девятый день);
6/3=2 (десятый день);
2/2=1 (одиннадцатый день, в который его съедят).
Итак, загадав 15552, Иван Царевич сможет продержаться ещё 10 дней.
Чтобы получить это число, необходимо понимать, что в конце концов мы придём к 1. Поэтому 15552 мы получим следущий образом:
1•2•3•2•3•2•3•2•3•2•3•2 (6 умножений на 2 и 5 умножений на 3).
x ∈{-2} ∪ [2;7]
Объяснение:
1) Найдём нули функции у₁ = х²-5х-14:
х²-5х-14 = 0
х₁,₂ = 5/2 ± √(25/4 +14) = 5/2 ± √(81/4) = 5/2 ± 9/2
х₁ = 5/2 + 9/2 = 14/2 = 7
х₂ = 5/2 - 9/2 = - 4/2 = -2
Графиком функции у₁ = х²-5х-14 является парабола, ветви которой направлены вверх; следовательно, у₁ = х²-5х-14 ≤0 на участке
x ∈ [-2; 7].
2) Неравенство х² ≥ 4 эквивалентно неравенству: х²- 4 ≥ 0.
Найдём нули функции у₂ =х²- 4:
х²- 4 = 0
х² = 4
х = ± √4
х₃ = - 2
х₄ = 2
Графиком функции у₂ = х²- 4 является парабола, ветви которой направлены вверх; функция у₂ = х²- 4 больше или равна нулю на участках:
x ∈(-∞; -2] ∪ [2;+∞)
3) Объединяем полученные решения, для чего на числовой оси отмечаем точки х₂ = -2; х₃ = -2; х₄ = 2; х₁ = 7 и находим перекрываемые области значений, одновременно удовлетворяющие неравенству х²-5х-14 ≤ 0 и неравенству х² ≥ 4:
x ∈{-2} ∪ [2;7]
ответ: x ∈{-2} ∪ [2;7]