В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
стеллаа
стеллаа
23.10.2022 12:41 •  Алгебра

Y²+xy-4x-9y+20=0 y=ax+1 x> 2 найти все значения а, при которых параметр имеет единственное решение

Показать ответ
Ответ:
Покемон123456789
Покемон123456789
09.10.2020 00:02

Условие. Y²+xy-4x-9y+20=0 ;   y=ax+1 ;   x>2

найти все значения а, при которых графики имеют одну общую точку(в нашем случае (ax+1)² + x(ax+1) -4x - 9(ax+1)+20=0 имеет единственное решение).

Подставим у = (ax+1)² в уравнение у²+xy-4x-9y+20=0, получим

(ax+1)^2+x(ax+1)-4x-9(ax+1)+20=0\\ a^2x^2+2ax+1+ax^2+x-4x-9ax-9+20=0\\ x^2(a^2+1)-(3+7a)x+12=0

Найдем дискриминант квадратного уравнения относительно x

D=(3+7a)^2-4(a^2+1)\cdot12=9+42a+49a^2-48a^2-48=\\ =a^2+42a-39=0

Получим a_{1,2}=-21\pm4\sqrt{30}


Если подставить a=-21+4\sqrt{30}, т.е. имеется квадратное уравнение (922-168\sqrt{30})x^2+(144-28\sqrt{30})x+12=0, у которого корень

                                                 \bigg(x-\dfrac{36+7\sqrt{30}}{29}\bigg)^2=0\\ \\ x=\dfrac{36+7\sqrt{30}}{29}2

Если подставить a=-21-4\sqrt{30}, т.е. имеется квадратное уравнение (922+168\sqrt{30})x^2+(144+28\sqrt{30})x+12=0, у которого корень

                                                 \bigg(x-\dfrac{36-7\sqrt{30}}{29}\bigg)^2=0\\ \\ x=\dfrac{36-7\sqrt{30}}{29}


ответ: a=-21+4\sqrt{30}

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота