Я ЧЕРЕЗ 12 МИНУТ СДАВАТЬ СОЧ график функции заданной уравнений у=(а+1)х-а+1пересекает ось абцис в точке с координатами 6,0 А) найдите значение а b) запишите функции в виде у=кх +! b
1. Аргумент функции - это независимая переменная. 2. Функция - это закон отображения множества Х на множество У - каждому значению х из множества Х соответствует одно единственное значение у из множества У. 3. Область определения функции - это множество допустимых значений аргумента. 4. График функции - это угеометрический образ функции, которые отображает множество точек плоскости, абсциссы и ординаты, связанных данной функцией. 5. Функцию называют линейной, если она задана формулой kx+b, где k - коэффициент прямой пропорциональности, b - свободный член (некое число). Линейную функцию называют функцией прямой пропорциональности, потому, что значения х прямопропорционпльны значениям у. 6. Графиком линейной функции является прямая, угол наклона которой задан коэффициентом k, а распотожение относительно оси 0Х задано свободным членом функции b/
2. Функция - это закон отображения множества Х на множество У - каждому значению х из множества Х соответствует одно единственное значение у из множества У.
3. Область определения функции - это множество допустимых значений аргумента.
4. График функции - это угеометрический образ функции, которые отображает множество точек плоскости, абсциссы и ординаты, связанных данной функцией.
5. Функцию называют линейной, если она задана формулой kx+b, где k - коэффициент прямой пропорциональности, b - свободный член (некое число). Линейную функцию называют функцией прямой пропорциональности, потому, что значения х прямопропорционпльны значениям у.
6. Графиком линейной функции является прямая, угол наклона которой задан коэффициентом k, а распотожение относительно оси 0Х задано свободным членом функции b/
log(4) (x + 2) - log(4) (x + 5) < 1
log(a) b a>0 b>0 a≠1
log(a) b - log(a) c = log(a) b/c
x+2>0 x>-2
x+5>0 x>-5
ОДЗ x∈(-2 +∞)
log(4) (x + 2) - log(4) (x + 5) < 1
log(4) (x + 2) / (x + 5) < log(4) 4
основание больше 1 снимаем логарифмы без изменения знака
(x + 2) / (x + 5) < 4
(x + 2)/(x + 5) - 4 < 0
(x + 2 - 4x - 20)/(x + 5) < 0
(- 3x - 18)/(x + 5) < 0
- 3(x + 6)/(x + 5) < 0
(x+6)/(x+5) > 0
-------------- (-6) ++++++++++ (-5) -------------------
x∈(-∞ -6) U (-5 +∞)
пересекаем с ОДЗ
x∈(-2 +∞)