Пускай скорость пассажирского поезда будет х км/ч. Тогда скорость товарного поезда будет х-20 км/ч. Время, за которое пассажирский поезд пройдёт 480 км, пусть будет у ч, тогда время товарного поезда будет у+4 ч. Имеем систему уравнений: х×у=480, (х-20)×(у+4)=480. х=480/у, ((480/у)-20)×(у+4)=480, ((480-20у)/у)×(у+4)=480, (480-20у)×(у+4)=480у, 480у+1920-20у^2-80у=480у, -20у^2-80у+1920=0, -у^2-4у+96=0, D=(-4)^2-4×(-1)×96=16+384=400, у1=(4-корень с 400)/(2×(-1))=(4-20)/(-2)=(-16)/(-2)=8, у2=(4+корень с 400)/(2×(-1))=(4+20)/(-2)=24/(-2)=-12. у2=-12 - не может быть ответом задачи, так как время не может быть отрицательным. Значит у=8, х=480/8=60. Имеем: скорость пассажирского поезда равна 60 км/ч, скорость товарно поезда равна 60-20=40 км/ч.
Арифметичною прогресією називається числова послідовність, в якій кожен наступний член, починаючи з другого, дорівнює сумі попереднього члена та сталого для даної послідовності числа. Це число називається різницею прогресії, і позначається d.
Пишуть. a1, a2, a3, …, an, ….
n-ний член арифметичної прогресії обчислюється за формулою: an=a1+d(n-1).
Геометричною прогресією називається числова послідовність, в якій кожен наступний член, починаючи з другого, дорівнює добутку попереднього члена та сталого для даної послідовності числа. Це число називається знаменником прогресії, і позначається q.
Пишуть. b1, b2, b3, …, bn, ….
n-ний член геометричної прогресії обчислюється за формулою: bn=b1q^n-1.
Объяснение:
Арифметичною прогресією називається числова послідовність, в якій кожен наступний член, починаючи з другого, дорівнює сумі попереднього члена та сталого для даної послідовності числа. Це число називається різницею прогресії, і позначається d.
Пишуть. a1, a2, a3, …, an, ….
n-ний член арифметичної прогресії обчислюється за формулою: an=a1+d(n-1).
Геометричною прогресією називається числова послідовність, в якій кожен наступний член, починаючи з другого, дорівнює добутку попереднього члена та сталого для даної послідовності числа. Це число називається знаменником прогресії, і позначається q.
Пишуть. b1, b2, b3, …, bn, ….
n-ний член геометричної прогресії обчислюється за формулою: bn=b1q^n-1.