То́ждество — это равенство, выполняющееся на всём множестве значений входящих в него переменных. Чтобы доказать тождество надо выполнить тождественные преобразования одной или обеих частей равенства, и получить слева и справа одинаковые выражения. Чтобы доказать, что равенство не является тождеством, достаточно найти одно допустимое значение переменной, при котором, получившиеся числовые выражения не будут равны друг другу.
1) ( -m-n)^2=(m-n)^2 m^2+2mn+n^2= m^2-2mn+n^2 - не тождественно равное выражение.
( -m-n)^2=(m+n)^2 m^2+2mn+n^2= m^2+2mn+n^2 -тождественно равное выражение
2) (-m+n)^2=(m-n)^2 m^2-2mn+n^2=m^2-2mn+n^2 - тождественно равное выражение
Из 9 солдат нужно выбрать некоторых 7. Число сделать это равно числу сочетаний из 9 элементов по 7:
Из 6 сержантов нужно выбрать некоторых 4. Число сделать это равно числу сочетаний из 6 элементов по 4:
Из 4 офицеров нужно выбрать некоторого 1. Число сделать это равно числу сочетаний из 4 элементов по 1:
Так как выбор солдат, выбор сержантов и выбор офицера попарно независимы, то соответствующие нужны перемножить. То есть любому выбору солдат мы можем сопоставить любой выбор сержантов, а также любой выбор офицера.
Чтобы доказать тождество надо выполнить тождественные преобразования одной или обеих частей равенства, и получить слева
и справа одинаковые выражения. Чтобы доказать, что равенство не является тождеством,
достаточно найти одно допустимое значение переменной, при котором,
получившиеся числовые выражения не будут равны друг другу.
1) ( -m-n)^2=(m-n)^2
m^2+2mn+n^2= m^2-2mn+n^2 - не тождественно равное выражение.
( -m-n)^2=(m+n)^2
m^2+2mn+n^2= m^2+2mn+n^2 -тождественно равное выражение
2) (-m+n)^2=(m-n)^2
m^2-2mn+n^2=m^2-2mn+n^2 - тождественно равное выражение
(-m+n)^2=(m+n)^2
m^2-2mn+n^2=m^2+2mn+n^2
И так же делаешь остальные два.
Из 9 солдат нужно выбрать некоторых 7. Число сделать это равно числу сочетаний из 9 элементов по 7:
Из 6 сержантов нужно выбрать некоторых 4. Число сделать это равно числу сочетаний из 6 элементов по 4:
Из 4 офицеров нужно выбрать некоторого 1. Число сделать это равно числу сочетаний из 4 элементов по 1:
Так как выбор солдат, выбор сержантов и выбор офицера попарно независимы, то соответствующие нужны перемножить. То есть любому выбору солдат мы можем сопоставить любой выбор сержантов, а также любой выбор офицера.
Общее число вариантов:
ответ: 2160 вариантов