Решение Пусть х км/ч - скорость второго пешехода. Тогда скорость первого - (х+1) км/ч. Так как встретились пешеходы в 9 км от пункта А, путь первого составил 9 км, а путь второго - 10 км. Значит, второй пешеход провел в пути (10/х) часов, а первый (9/(х+1)+0,5) часов, полчаса из которых потратил на остановку. Составим равнение: 10/x = 9/(x + 1) + 1/2 10/x = (18 + x + 1)/([2*(x + 1)] 20x + 20 = 18x + x² + x x² – x – 20 = 0 x₁ = - 4 не удовлетворяет условию задачи x₂ = 5 5 (км/ч) - скорость второго пешехода 1) 5 + 1 = 6 (км/ч) - скорость первого пешехода ответ: 6 км/ч ; 5 км/ч.
Среднее арифметическое – число, равное сумме всех чисел множества, делённой на их количество.
Размахом ряда чисел называется разность между наибольшим и наименьшим из этих чисел.
Модой ряда чисел называется число, которое встречается в данном ряду чаще других.
Медианой упорядоченного ряда чисел с нечётным числом членов называется число, записанное посередине, а медианой упорядоченного ряда чисел с чётным числом членов называется среднее арифметическое двух чисел, записанных посередине.
Среднее арифметическое данного ряда чисел – (-16 + 10 + 31 + 4 + 8 - 11 + 2) : 7 = 4
Размах данного ряда чисел – 31 - (-16) = 31 + 16 = 47
Мода данного ряда чисел отсутствует, поскольку ни одно из чисел не повторяется больше одного раза.
Пусть х км/ч - скорость второго пешехода.
Тогда скорость первого - (х+1) км/ч.
Так как встретились пешеходы в 9 км от пункта А,
путь первого составил 9 км, а путь второго - 10 км.
Значит, второй пешеход провел в пути (10/х) часов,
а первый (9/(х+1)+0,5) часов, полчаса из которых потратил на остановку.
Составим равнение:
10/x = 9/(x + 1) + 1/2
10/x = (18 + x + 1)/([2*(x + 1)]
20x + 20 = 18x + x² + x
x² – x – 20 = 0
x₁ = - 4 не удовлетворяет условию задачи
x₂ = 5
5 (км/ч) - скорость второго пешехода
1) 5 + 1 = 6 (км/ч) - скорость первого пешехода
ответ: 6 км/ч ; 5 км/ч.
Среднее арифметическое – число, равное сумме всех чисел множества, делённой на их количество.
Размахом ряда чисел называется разность между наибольшим и наименьшим из этих чисел.
Модой ряда чисел называется число, которое встречается в данном ряду чаще других.
Медианой упорядоченного ряда чисел с нечётным числом членов называется число, записанное посередине, а медианой упорядоченного ряда чисел с чётным числом членов называется среднее арифметическое двух чисел, записанных посередине.
Среднее арифметическое данного ряда чисел – (-16 + 10 + 31 + 4 + 8 - 11 + 2) : 7 = 4
Размах данного ряда чисел – 31 - (-16) = 31 + 16 = 47
Мода данного ряда чисел отсутствует, поскольку ни одно из чисел не повторяется больше одного раза.