Пусть весь путь - S. Скорость гркзовика - v(г). Скорость легкового автомобиля - v(a). Время затраченное грузовиком и легковым автомобилем на весь путь t(г) и t(a) соответственно. По условию t(a)=t(г)-1.
Найдём скорость автомобился и грузовика из формулы v=S/t: v(a)=S/t(a)=S/(t(г)-1) v(г)=S/t(г).
По условию сказано, что при движении навстречу друг другу они затратили 1 час и 12 минут, т.е. t(3)=1,2 ч. Так как они двигались на встречу друг к другу, то общая скорость v(o)=v(a)+v(г). Тогда весь путь равен S=v(o)t(3). Подставляем значение общей скорости: S=(v(a)+v(г))t(3) Подставляем значения скоростей, которые нашли ранее: S=(S/(t(г)-1) + S/t(г))×t(3) Выносим S за скобки и сокращаем: 1=(1/(t(г)-1) + 1/t(г))×t(3) Приводим всё к общему знаменателю внутри скобок и получаем уравнение: t(г)^2-3.4t(г)+1.2=0 Решая уравнение находим время которон затратил грузовик на весь путь t(г)=3ч. (Корень 0.4 не подойдет, т.к. тогда получится, что время автомобилч на дорогу отрицательно) Ну а время автомобиля на дорогу t(a)=3-1=2
Дано два числа. Укажіть рівняння, яке отримаємо, позначивши менше із чисел через x, якщо відомо, що сума цих чисел дорівнює: 5, а їхній добуток дорівнює 6.
х+у=5
х*у=6
Выразим у через х в первом уравнении, подставим выражение во второе уравнение и вычислим х:
у=5-х
х*(5-х)=6
5х-х²=6
-х²+5х-6=0/-1
х²-5х+6=0, квадратное уравнение, ищем корни:
D=b²-4ac = 25-24=1 √D= 1
х₁=(-b-√D)/2a
х₁=(5-1)/2
х₁=4/2=2
х₂=(-b+√D)/2a
х₂=(5+1)/2
х₂=6/2=3
у=5-х
у₁=5-х₁
у₁=5-2=3
у₂=5-х₂
у₂=5-3=2
Получили две пары решений: х₁=2 и х₂=3
у₁=3 у₂=2.
По условию задачи х меньшее число, значит, решением будет первая пара.
Время затраченное грузовиком и легковым автомобилем на весь путь t(г) и t(a) соответственно. По условию t(a)=t(г)-1.
Найдём скорость автомобился и грузовика из формулы v=S/t:
v(a)=S/t(a)=S/(t(г)-1)
v(г)=S/t(г).
По условию сказано, что при движении навстречу друг другу они затратили 1 час и 12 минут, т.е. t(3)=1,2 ч.
Так как они двигались на встречу друг к другу, то общая скорость v(o)=v(a)+v(г).
Тогда весь путь равен S=v(o)t(3).
Подставляем значение общей скорости:
S=(v(a)+v(г))t(3)
Подставляем значения скоростей, которые нашли ранее:
S=(S/(t(г)-1) + S/t(г))×t(3)
Выносим S за скобки и сокращаем:
1=(1/(t(г)-1) + 1/t(г))×t(3)
Приводим всё к общему знаменателю внутри скобок и получаем уравнение:
t(г)^2-3.4t(г)+1.2=0
Решая уравнение находим время которон затратил грузовик на весь путь t(г)=3ч. (Корень 0.4 не подойдет, т.к. тогда получится, что время автомобилч на дорогу отрицательно)
Ну а время автомобиля на дорогу t(a)=3-1=2
Первое число=3; второе число=2.
Объяснение:
Дано два числа. Укажіть рівняння, яке отримаємо, позначивши менше із чисел через x, якщо відомо, що сума цих чисел дорівнює: 5, а їхній добуток дорівнює 6.
х+у=5
х*у=6
Выразим у через х в первом уравнении, подставим выражение во второе уравнение и вычислим х:
у=5-х
х*(5-х)=6
5х-х²=6
-х²+5х-6=0/-1
х²-5х+6=0, квадратное уравнение, ищем корни:
D=b²-4ac = 25-24=1 √D= 1
х₁=(-b-√D)/2a
х₁=(5-1)/2
х₁=4/2=2
х₂=(-b+√D)/2a
х₂=(5+1)/2
х₂=6/2=3
у=5-х
у₁=5-х₁
у₁=5-2=3
у₂=5-х₂
у₂=5-3=2
Получили две пары решений: х₁=2 и х₂=3
у₁=3 у₂=2.
По условию задачи х меньшее число, значит, решением будет первая пара.
Вывод: первое число=3; второе число=2.