1)4x²+64=0 4x²=0-64 4x²=-64 x²=-64:4 x²=-16 x в квадрате может быть равно только положительному числу,так два минуса=плюс.Например -6²=36,а 4²=16.Отрицательные не получились,поэтому у уравнения нет решения ответ: нет решения 2)25x²-4=0 25x²=0+4 25x²=4 x²=4/25 x=2/5 или -2/5 25*2/5²-4=0 25(-2/5)²-4=0 ответ:x=2/5,x=-2/5 3)-7x²=0 x²=0:(-7) x²=0 x=0 -7*0²=0 ответ:x=0 4)9x²-1=-1 9x²-1+1=0 9x²-0=0 9x²=0-0 9x²=0 x²=0:9 x²=0 x=0 9*0²-1=-1 ответ:x=0 5)(6x+9)(3-x)=0 6x+9=0 или 3-x=0 6x=0-9 или x=3-0 6x=-9 или x=3 x=-9/6 или x=3 (6(-9/6)+9)(3-(-9/6))=0 (6*3+9)(3-3)=0 ответ:x=-9/6;x=3
4x²=0-64
4x²=-64
x²=-64:4
x²=-16
x в квадрате может быть равно только положительному числу,так два минуса=плюс.Например -6²=36,а 4²=16.Отрицательные не получились,поэтому у уравнения нет решения
ответ: нет решения
2)25x²-4=0
25x²=0+4
25x²=4
x²=4/25
x=2/5 или -2/5
25*2/5²-4=0
25(-2/5)²-4=0
ответ:x=2/5,x=-2/5
3)-7x²=0
x²=0:(-7)
x²=0
x=0
-7*0²=0
ответ:x=0
4)9x²-1=-1
9x²-1+1=0
9x²-0=0
9x²=0-0
9x²=0
x²=0:9
x²=0
x=0
9*0²-1=-1
ответ:x=0
5)(6x+9)(3-x)=0
6x+9=0 или 3-x=0
6x=0-9 или x=3-0
6x=-9 или x=3
x=-9/6 или x=3
(6(-9/6)+9)(3-(-9/6))=0
(6*3+9)(3-3)=0
ответ:x=-9/6;x=3
2x - y = -3; <=> y = 2x + 3. (1)
3x + y = -2; <=> y = -3x - 2. (2)
Построим графики функций (1) и (2). Координаты точки их пересечения и будут решением системы.
Функции (1) и (2) линейные, то есть их графиками являются прямые. Для построения прямой достаточно двух точек.
Строим график функции (1): при x = 0 y = 3; при x = 1 y = 5. Через точки (0, 3) и (1, 5) проводим прямую.
Строим график функции (2): при x = 0 y = -2; при x = -1 y = 1. Через точки (0, -2) и (-1, 1) проводим прямую.
По чертежу очевидно, что графики функций (1) и (2) пересекаются в точке (-1, 1). Следовательно, (-1, 1) - решение системы.
ответ: (-1, 1).
Чертеж: