По окончанию рейса теплоходы возвращаются обратно и сразу отправляются в новый рейс. Первый теплоход обрачивается за 15 дней, второй - за 24 дня (наверно, в разные пункты ходят). Если их периоды кратны некоторому числу, то в какие-то дни они будут вновь уходить в рейс в один и тот же день. При переводе с житейского на математический это означает, что нужно найти наименьшее общее кратное двух чисел 15 и 24. Для этого можно выписывать для каждого числа в подряд кратные числа, пока не будет совпадения. Но мы пойдём другим путём, а именно, разложим наши числа на простые множители: 15 = 3 * 5 24 = 2 * 2 * 2 * 3 Как видно, наши числа различаются двумя множителями: 5 нет в числе 24, а в числе 15 нет трёх двоек. Поэтому можно, или 15 умножить на 8 и получить 120, или 24 усножить на 5 и получить те же 120. Итак, через 120 дней теплоходы вновь отправятся вместе. За это время первый теплоход сделает 120:15 = 8 рейсов, а второй - 120:24 = 5 рейсов
Для острых углов известно соотношение sinα<α<tgα . α=1/(n+6) стремится к 0 при n->∞.
tg1/(n+6)>1/(n+6).
Исходный ряд сравним с рядом ,общий член которого 1/(n+6).Этот ряд расходящийся, так как его можно сравнить с расходящимся обобщённо-гармоническим рядом ∑1/n : lim (1/n)/(1/n+6)=1≠0 при n->∞ ⇒ оба ряда ∑1/n и ∑1/(n+6) расходятся.
Ряд ∑1/(n+6) является минорантным, а ряд ∑tg1/(n+6) мажорантным. Из расходимости минорантного ряда следует расходимость мажорантного. ⇒∑tg1/(n+6) - расходящийся ряд.
При переводе с житейского на математический это означает, что нужно найти наименьшее общее кратное двух чисел 15 и 24. Для этого можно выписывать для каждого числа в подряд кратные числа, пока не будет совпадения. Но мы пойдём другим путём, а именно, разложим наши числа на простые множители:
15 = 3 * 5
24 = 2 * 2 * 2 * 3
Как видно, наши числа различаются двумя множителями: 5 нет в числе 24, а в числе 15 нет трёх двоек. Поэтому можно, или 15 умножить на 8 и получить 120, или 24 усножить на 5 и получить те же 120.
Итак, через 120 дней теплоходы вновь отправятся вместе.
За это время первый теплоход сделает 120:15 = 8 рейсов, а второй - 120:24 = 5 рейсов
Для острых углов известно соотношение sinα<α<tgα . α=1/(n+6) стремится к 0 при n->∞.
tg1/(n+6)>1/(n+6).
Исходный ряд сравним с рядом ,общий член которого 1/(n+6).Этот ряд расходящийся, так как его можно сравнить с расходящимся обобщённо-гармоническим рядом ∑1/n : lim (1/n)/(1/n+6)=1≠0 при n->∞ ⇒ оба ряда ∑1/n и ∑1/(n+6) расходятся.
Ряд ∑1/(n+6) является минорантным, а ряд ∑tg1/(n+6) мажорантным. Из расходимости минорантного ряда следует расходимость мажорантного. ⇒∑tg1/(n+6) - расходящийся ряд.