Площадь прямоугольного треугольника равна произведение катетов деленное на 2
Обозначим катеты за A и B, гипотинузу за C. И так как сумма углов треугольника равна 180 градусов, то получается третий, неизвестный угол равен 180-90-15=75 градусов
По теореме косинусов: a^2=b^2+c^2-2bcCos(15)
по теореме Пифагора: a^2+b^2=c^2
Получается система уравнений: a^2=b^2+16-2*4*b*0,9659 a^2+b^2=16
Уравнение квадратной параболы в общем виде: у = ах² + вх + с Найдём коэффициенты а, в, с Подставим координаты точки А -6 = а· 0² + в·0 + с → с = -6 Подставим координаты точки В -9 = а·1² + в·1 - 6 → а + в = -3 (1) Подставим координаты точки С 6 = а·6² + в·6 - 6 → 6а + в = 2 → в = 2 - 6а (2) Подставим (2) а (1) а + 2 - 6а = -3 → а = 1 Из (2) получим в = -4 Итак, мы получили уравнение параболы: у = х² - 4х - 6 Абсцисса вершины параболы: m =-в/2а = 4 / 2 = 2 Ординату вершины параболы найдём, подставив в уравнение параболы х = m = 2 у = 2² - 4 · 2 - 6 = -10 ответ: вершиной параболы является точка с координатами (2; -10)
Обозначим катеты за A и B, гипотинузу за C.
И так как сумма углов треугольника равна 180 градусов, то получается третий, неизвестный угол равен 180-90-15=75 градусов
По теореме косинусов:
a^2=b^2+c^2-2bcCos(15)
по теореме Пифагора:
a^2+b^2=c^2
Получается система уравнений:
a^2=b^2+16-2*4*b*0,9659
a^2+b^2=16
a^2=16-b^2
a=корень(16-b^2)
16-b^2=b^2+16-7,7274b
2b^2-7,7274b=0
2b=7,7274
b=3,8637
a=корень(16-b^2)=корень(1,0718)=1,0353
S=ab/2=3,8637*1,0353/2=2
Найдём коэффициенты а, в, с
Подставим координаты точки А
-6 = а· 0² + в·0 + с → с = -6
Подставим координаты точки В
-9 = а·1² + в·1 - 6 → а + в = -3 (1)
Подставим координаты точки С
6 = а·6² + в·6 - 6 → 6а + в = 2 → в = 2 - 6а (2)
Подставим (2) а (1)
а + 2 - 6а = -3 → а = 1
Из (2) получим в = -4
Итак, мы получили уравнение параболы:
у = х² - 4х - 6
Абсцисса вершины параболы: m =-в/2а = 4 / 2 = 2
Ординату вершины параболы найдём,
подставив в уравнение параболы х = m = 2
у = 2² - 4 · 2 - 6 = -10
ответ: вершиной параболы является точка с координатами (2; -10)